Stability of the Drygas Functional Equation on Restricted Domain

被引:14
作者
Piszczek, Magdalena [1 ]
Szczawinska, Joanna [1 ]
机构
[1] Pedag Univ, Inst Math, PL-30084 Krakow, Poland
关键词
Drygas equation; stability; fixed point theorem; SPACES;
D O I
10.1007/s00025-014-0418-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the stability of the Drygas functional equation on a restricted domain. The main tool used in the proofs is the fixed point theorem for functional spaces.
引用
收藏
页码:11 / 24
页数:14
相关论文
共 9 条
[1]   A fixed point approach to stability of functional equations [J].
Brzdek, Janusz ;
Chudziak, Jacek ;
Pales, Zsolt .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (17) :6728-6732
[2]   ON THE STABILITY OF THE QUADRATIC MAPPING IN NORMED SPACES [J].
CZERWIK, S .
ABHANDLUNGEN AUS DEM MATHEMATISCHEN SEMINAR DER UNIVERSITAT HAMBURG, 1992, 62 :59-64
[3]   A COMMON GENERALIZATION OF FUNCTIONAL-EQUATIONS CHARACTERIZING NORMED AND QUASI-INNER-PRODUCT SPACES [J].
EBANKS, BR ;
KANNAPPAN, P ;
SAHOO, PK .
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1992, 35 (03) :321-327
[4]   Variations on the Drygas equation and its stability [J].
Forti, Gian-Luigi ;
Sikorska, Justyna .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (02) :343-350
[5]  
Gupta K, 1987, Advances in Multivariate Statistical Analysis, P13
[6]  
Jung SM, 2002, Aequationes Mathematicae, V64, P263, DOI [10.1007/PL00012407, DOI 10.1007/PL00012407]
[7]   On a direct method for proving the Hyers-Ulam stability of functional equations [J].
Sikorska, Justyna .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 372 (01) :99-109
[8]   On set-valued solutions of a functional equation of Drygas [J].
Smajdor, Wilhelmina .
AEQUATIONES MATHEMATICAE, 2009, 77 (1-2) :89-97
[9]  
Yang D., 2004, Aequationes Math, V68, P108, DOI [10.1007/s00010-003-2722-6, DOI 10.1007/S00010-003-2722-6]