Measurements and Predictions of Binary Component Aerosol Particle Viscosity

被引:92
作者
Song, Young Chul [1 ]
Haddrell, Allen E. [1 ]
Bzdek, Bryan R. [1 ]
Reid, Jonathan P. [1 ]
Barman, Thomas [2 ]
Topping, David O. [2 ,3 ]
Percival, Carl [2 ]
Cai, Chen [4 ]
机构
[1] Univ Bristol, Sch Chem, Cantocks Close, Bristol BS8 1TS, Avon, England
[2] Univ Manchester, Sch Earth Atmospher & Environm Sci, Manchester M13 9PL, Lancs, England
[3] Univ Manchester, Natl Ctr Atmospher Sci, Manchester M13 9PL, Lancs, England
[4] Beijing Inst Technol, Inst Chem Phys, Key Lab Cluster Sci, Beijing 100081, Peoples R China
基金
英国工程与自然科学研究理事会;
关键词
SECONDARY ORGANIC AEROSOL; SHIKIMIC ACID OZONOLYSIS; ALPHA-PINENE; ACTIVITY-COEFFICIENTS; ATMOSPHERIC AEROSOLS; THERMODYNAMIC MODEL; RELATIVE-HUMIDITY; GLASS-TRANSITION; REFRACTIVE-INDEX; SUPERCOOLED LIQUIDS;
D O I
10.1021/acs.jpca.6b07835
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Organic aerosol particles are known to often absorb/desorb water continuously with change in gas phase relative humidity (RH) without crystallization. Indeed, the prevalence of metastable ultraviscous liquid or amorphous phases in aerosol is well-established with solutes often far exceeding bulk phase solubility limits. Particles are expected to become increasingly viscous with drying, a consequence of the plasticizing effect of water. We report here measurements of the variation in aerosol particle viscosity with RH (equal to condensed phase water activity) for a range of organic solutes including alcohols (diols to hexols), saccharides (mono-, di-, and tri-), and carboxylic acids (di-, tri-, and mixtures). Particle viscosities are measured over a wide range (10(-3) to 10(10) Pa s) using aerosol optical tweezers, inferring the viscosity from the time scale for a composite particle to relax to a perfect sphere following the coalescence of two particles. Aerosol measurements compare well with bulk phase studies (well-within an order of magnitude deviation at worst) over ranges of water activity accessible to both. Predictions of pure component viscosity from group contribution approaches combined with either nonideal or ideal mixing reproduce the RH-dependent trends particularly well for the alcohol, di-, and tricarboxylic acid systems extending up to viscosities of 104 Pa s. By contrast, predictions overestimate the viscosity by many orders of magnitude for the mono-, di-, and trisaccharide systems, components for which the pure component subcooled melt viscosities are >> 10(12) Pa s. When combined with a typical scheme for simulating the oxidation of a-pinene, a typical atmospheric pathway to secondary organic aerosol (SOA), these predictive tools suggest that the pure component viscosities are less than 106 Pa s for similar to 97% of the 50,000 chemical products included in the scheme. These component viscosities are consistent with the conclusion that the viscosity of alpha-pinene SOA is most likely in the range 10(5) to 10(8) Pa s. Potential improvements to the group contribution predictive tools for pure component viscosities are considered.
引用
收藏
页码:8123 / 8137
页数:15
相关论文
共 79 条
[1]   Experimental determination of chemical diffusion within secondary organic aerosol particles [J].
Abramson, Evan ;
Imre, Dan ;
Beranek, Josef ;
Wilson, Jacqueline ;
Zelenyuk, Alla .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2013, 15 (08) :2983-2991
[2]   Effect of crystallization kinetics on the properties of spray dried microparticles [J].
Baldelli, Alberto ;
Power, Rory M. ;
Miles, Rachael E. H. ;
Reid, Jonathan P. ;
Vehring, Reinhard .
AEROSOL SCIENCE AND TECHNOLOGY, 2016, 50 (07) :693-704
[3]   The sensitivity of secondary organic aerosol (SOA) component partitioning to the predictions of component properties - Part 3: Investigation of condensed compounds generated by a near-explicit model of VOC oxidation [J].
Barley, M. H. ;
Topping, D. ;
Lowe, D. ;
Utembe, S. ;
McFiggans, G. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2011, 11 (24) :13145-13159
[4]   Hygroscopic Influence on the Semisolid-to-Liquid Transition of Secondary Organic Materials [J].
Bateman, Adam P. ;
Bertram, Allan K. ;
Martin, Scot T. .
JOURNAL OF PHYSICAL CHEMISTRY A, 2015, 119 (19) :4386-4395
[5]   Impactor Apparatus for the Study of Particle Rebound: Relative Humidity and Capillary Forces [J].
Bateman, Adam P. ;
Belassein, Helene ;
Martin, Scot T. .
AEROSOL SCIENCE AND TECHNOLOGY, 2014, 48 (01) :42-52
[6]   Ozone uptake on glassy, semi-solid and liquid organic matter and the role of reactive oxygen intermediates in atmospheric aerosol chemistry [J].
Berkemeier, Thomas ;
Steimer, Sarah S. ;
Krieger, Ulrich K. ;
Peter, Thomas ;
Poeschl, Ulrich ;
Ammann, Markus ;
Shiraiwa, Manabu .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2016, 18 (18) :12662-12674
[7]   Saturation Vapor Pressures and Transition Enthalpies of Low-Volatility Organic Molecules of Atmospheric Relevance: From Dicarboxylic Acids to Complex Mixtures [J].
Bilde, Merete ;
Barsanti, Kelley ;
Booth, Murray ;
Cappa, Christopher D. ;
Donahue, Neil M. ;
Emanuelsson, Eva U. ;
McFiggans, Gordon ;
Krieger, Ulrich K. ;
Marcolli, Claudia ;
Tropping, David ;
Ziemann, Paul ;
Barley, Mark ;
Clegg, Simon ;
Dennis-Smither, Benjamin ;
Hallquist, Mattias ;
Hallquist, Asa M. ;
Khlystov, Andrey ;
Kulmala, Markku ;
Mogensen, Ditte ;
Percival, Carl J. ;
Pope, Francis ;
Reid, Jonathan P. ;
da Silva, M. A. V. Ribeiro ;
Rosenoern, Thomas ;
Salo, Kent ;
Soonsin, Vacharapom Pia ;
Yli-Juuti, Taina ;
Prisle, Nonne L. ;
Pagels, Joakim ;
Rarey, Juergen ;
Zardini, Alessandro A. ;
Riipinen, Ilona .
CHEMICAL REVIEWS, 2015, 115 (10) :4115-4156
[8]   Comparing the mechanism of water condensation and evaporation in glassy aerosol [J].
Bones, David L. ;
Reid, Jonathan P. ;
Lienhard, Daniel M. ;
Krieger, Ulrich K. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2012, 109 (29) :11613-11618
[9]   Connecting Bulk Viscosity Measurements to Kinetic Limitations on Attaining Equilibrium for a Model Aerosol Composition [J].
Booth, A. Murray ;
Murphy, Ben ;
Riipinen, Ilona ;
Percival, Carl J. ;
Topping, David O. .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2014, 48 (16) :9298-9305
[10]  
Bosse D., 2005, DIFFUSION VISCOSITY