A Synthetic, Xeno-Free Peptide Surface for Expansion and Directed Differentiation of Human Induced Pluripotent Stem Cells

被引:75
作者
Jin, Sha [1 ]
Yao, Huantong [1 ]
Weber, Jennifer L. [2 ]
Melkoumian, Zara K. [2 ]
Ye, Kaiming [1 ]
机构
[1] Univ Arkansas, Coll Engn, Dept Biomed Engn, Fayetteville, AR 72701 USA
[2] Corning Inc, Life Sci, Corning, NY 14831 USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
SELF-RENEWAL; SIGNAL-TRANSDUCTION; ADHESION; FORCE; PROLIFERATION; CULTURE; GROWTH; IDENTIFICATION; TOPOGRAPHY; MECHANISMS;
D O I
10.1371/journal.pone.0050880
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Human induced pluripotent stem cells have the potential to become an unlimited cell source for cell replacement therapy. The realization of this potential, however, depends on the availability of culture methods that are robust, scalable, and use chemically defined materials. Despite significant advances in hiPSC technologies, the expansion of hiPSCs relies upon the use of animal-derived extracellular matrix extracts, such as Matrigel, which raises safety concerns over the use of these products. In this work, we investigated the feasibility of expanding and differentiating hiPSCs on a chemically defined, xeno-free synthetic peptide substrate, i.e. Corning Synthemax (R) Surface. We demonstrated that the Synthemax Surface supports the attachment, spreading, and proliferation of hiPSCs, as well as hiPSCs' lineage-specific differentiation. hiPSCs colonies grown on Synthemax Surfaces exhibit less spread and more compact morphology compared to cells grown on Matrigel (TM). The cytoskeleton characterization of hiPSCs grown on the Synthemax Surface revealed formation of denser actin filaments in the cell-cell interface. The down-regulation of vinculin and up-regulation of zyxin expression were also observed in hiPSCs grown on the Synthemax Surface. Further examination of cell-ECM interaction revealed that hiPSCs grown on the Synthemax Surface primarily utilize alpha(v)beta(5) integrins to mediate attachment to the substrate, whereas multiple integrins are involved in cell attachment to Matrigel. Finally, hiPSCs can be maintained undifferentiated on the Synthemax Surface for more than ten passages. These studies provide a novel approach for expansion of hiPSCs using synthetic peptide engineered surface as a substrate to avoid a potential risk of contamination and lot-to-lot variability with animal derived materials.
引用
收藏
页数:10
相关论文
共 67 条
[1]   Feeder layer- and serum-free culture of human embryonic stem cells [J].
Amit, M ;
Shariki, C ;
Margulets, V ;
Itskovitz-Eldor, J .
BIOLOGY OF REPRODUCTION, 2004, 70 (03) :837-845
[2]  
[Anonymous], 2007, HUM CELL CULT
[3]   Force and focal adhesion assembly: a close relationship studied using elastic micropatterned substrates [J].
Balaban, NQ ;
Schwarz, US ;
Riveline, D ;
Goichberg, P ;
Tzur, G ;
Sabanay, I ;
Mahalu, D ;
Safran, S ;
Bershadsky, A ;
Addadi, L ;
Geiger, B .
NATURE CELL BIOLOGY, 2001, 3 (05) :466-472
[4]   Human embryonic stem cells:: lessons from stem cell niches in vivo [J].
Bendall, Sean C. ;
Stewart, Morag H. ;
Bhatia, Mickie .
REGENERATIVE MEDICINE, 2008, 3 (03) :365-376
[5]   The influence of microscale topography on fibroblast attachment and motility [J].
Berry, CC ;
Campbell, G ;
Spadiccino, A ;
Robertson, M ;
Curtis, ASG .
BIOMATERIALS, 2004, 25 (26) :5781-5788
[6]   Adhesion-dependent cell mechanosensitivity [J].
Bershadsky, AD ;
Balaban, NQ ;
Geiger, B .
ANNUAL REVIEW OF CELL AND DEVELOPMENTAL BIOLOGY, 2003, 19 :677-695
[7]   Expression of nodal, lefty-A, and lefty-B in undifferentiated human embryonic stem cells requires activation of Smad2/3 [J].
Besser, D .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2004, 279 (43) :45076-45084
[8]   Recombinant vitronectin is a functionally defined substrate that supports human embryonic stem cell self-renewal via αVβ5 integrin [J].
Braam, Stefan R. ;
Zeinstra, Laura ;
Litjens, Sandy ;
Ward-van Oostwaard, Dorien ;
van den Brink, Stieneke ;
van Laake, Linda ;
Lebrin, Franck ;
Kats, Peter ;
Hochstenbach, Ron ;
Passier, Robert ;
Sonnenberg, Arnoud ;
Mummery, Christine L. .
STEM CELLS, 2008, 26 (09) :2257-2265
[9]   Molecular mechanisms of nonmuscle myosin-II regulation [J].
Bresnick, AR .
CURRENT OPINION IN CELL BIOLOGY, 1999, 11 (01) :26-33
[10]   A NEW NOMENCLATURE FOR THE LAMININS [J].
BURGESON, RE ;
CHIQUET, M ;
DEUTZMANN, R ;
EKBLOM, P ;
ENGEL, J ;
KLEINMAN, H ;
MARTIN, GR ;
MENEGUZZI, G ;
PAULSSON, M ;
SANES, J ;
TIMPL, R ;
TRYGGVASON, K ;
YAMADA, Y ;
YURCHENCO, PD .
MATRIX BIOLOGY, 1994, 14 (03) :209-211