Intravenous infusion of mesenchymal stem cells enhances regional perfusion and improves ventricular function in a porcine model of myocardial infarction

被引:127
作者
Halkos, Michael E. [1 ]
Zhao, Zhi-Qing [1 ]
Kerendi, Faraz [1 ]
Wang, Ning-Ping [1 ]
Jiang, Rong [1 ]
Schmarkey, L. Susan [1 ]
Martin, Bradley J. [2 ]
Quyyumi, Arshed A. [3 ]
Few, Walter L. [3 ]
Kin, Hajime [1 ]
Guyton, Robert A. [1 ]
Vinten-Johansen, Jakob [1 ]
机构
[1] Emory Crawford Long Hosp, Div Cardiothorac Surg, Cardiothorac Res Lab, Atlanta, GA 30308 USA
[2] Osiris Therapeut, Baltimore, MD USA
[3] Emory Univ, Sch Med, Div Cardiol, Atlanta, GA 30322 USA
关键词
angiogenesis; cardiac function; myocardial infarction; mesenchymal stem cells; reperfusion;
D O I
10.1007/s00395-008-0741-0
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Transplantation of stem cells may improve regional perfusion and post-infarct ventricular function, but the optimal dose and efficacy of cell delivery via the intravenous route has not been determined. This study tested the hypothesis that intravenous infusion of bone marrow-derived mesenchymal stem cells (MSCs) enhances regional perfusion and improves ventricular function after myocardial infarction. In a closed-chest pig model, the LAD coronary artery was occluded for 75 min by angioplasty balloon inflation followed by 12 weeks of reperfusion. After 15 min of reperfusion, pigs randomly received 1 of 4 treatments: (1) Vehicle (Control, n = 10); (2) 1 x 10(6) MSCs/kg (1 mill, n = 7); (3) 3 x 10(6) MSCs/kg (3 mill, n = 8) and (4) 10 x 10(6) MSCs/kg (10 mill, n = 8). Angiogenesis was demonstrated by immunohistochemical staining, myocardial blood flow (steady state and vasodilator reserve) was measured using 15 mu m neutron-activated microspheres, and cardiac function was determined by contrast left ventriculography (ejection fraction) and pressure-volume relationships. After 12 week of reperfusion, von Willebrand Factor-positive vessels and tissue vascular endothelial growth factor (VEGF) expression in the scar zone was significantly greater in all MSCs-treated animals relative to Control. Steady state myocardial blood flow in the scar tissue was comparable among groups. However, adenosine recruited vasodilator reserve in the scar zone induced by intracoronary adenosine was significantly higher in the MSC-treated animals compared to Control. Furthermore, preload-recruitable stroke work and systolic performance were significantly greater compared to Control. In conclusion, these data demonstrate that intravenous delivery of MSCs during early reperfusion augments vasculogenesis, enhances regional perfusion, and improves post-infarct ventricular function. The results suggest that intravenous infusion of MSCs is an effective modality for the treatment of ischemia/reperfusion induced myocardial injury.
引用
收藏
页码:525 / 536
页数:12
相关论文
共 49 条
[1]  
Amado LC, 2005, P NATL ACAD SCI USA, V102, P11474, DOI 10.1073/pnas.0504388102
[2]   Multimodality noninvasive imaging demonstrates in vivo cardiac regeneration after mesenchymal stem cell therapy [J].
Amado, Luciano C. ;
Schuleri, Karl H. ;
Saliaris, Anastasios P. ;
Boyle, Andrew J. ;
Helm, Robert ;
Oskouei, Behzad ;
Centola, Marco ;
Eneboe, Virginia ;
Young, Randell ;
Lima, Joao A. C. ;
Lardo, Albert C. ;
Heldman, Alan W. ;
Hare, Joshua M. .
JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2006, 48 (10) :2116-2124
[3]   Effect of stromal-cell-derived factor 1 on stem-cell homing and tissue regeneration in ischaemic cardiomyopathy [J].
Askari, AT ;
Unzek, S ;
Popovic, ZB ;
Goldman, CK ;
Forudi, F ;
Kiedrowski, M ;
Rovner, A ;
Ellis, SG ;
Thomas, JD ;
DiCorleto, PE ;
Topol, EJ ;
Penn, MS .
LANCET, 2003, 362 (9385) :697-703
[4]   Transplantation of progenitor cells and regeneration enhancement in acute myocardial infarction -: (TOPCARE-AMI) [J].
Assmus, B ;
Schächinger, V ;
Teupe, C ;
Britten, M ;
Lehmann, R ;
Döbert, N ;
Grünwald, F ;
Aicher, A ;
Urbich, C ;
Martin, H ;
Hoelzer, D ;
Dimmeler, S ;
Zeiher, AM .
CIRCULATION, 2002, 106 (24) :3009-3017
[5]   Haematopoietic stem cells adopt mature haematopoietic fates in ischaemic myocardium [J].
Balsam, LB ;
Wagers, AJ ;
Christensen, JL ;
Kofidis, T ;
Weissman, IL ;
Robbins, RC .
NATURE, 2004, 428 (6983) :668-673
[6]   Systemic delivery of bone marrow-derived mesenchymal stem cells to the infarcted myocardium - Feasibility, cell migration, and body distribution [J].
Barbash, IM ;
Chouraqui, P ;
Baron, J ;
Feinberg, MS ;
Etzion, S ;
Tessone, A ;
Miller, L ;
Guetta, E ;
Zipori, D ;
Kedes, LH ;
Kloner, RA ;
Leor, J .
CIRCULATION, 2003, 108 (07) :863-868
[7]  
Caparrelli DJ, 2001, CIRCULATION, V104, P599
[8]   ACUTE AND CHRONIC MICROSPHERE LOSS FROM CANINE LEFT-VENTRICULAR MYOCARDIUM [J].
CONSIGNY, PM ;
VERRIER, ED ;
PAYNE, BD ;
EDELIST, G ;
JESTER, J ;
BAER, RW ;
VLAHAKES, GJ ;
HOFFMAN, JIE .
AMERICAN JOURNAL OF PHYSIOLOGY, 1982, 242 (03) :H392-H404
[9]   Mesenchymal progenitor cells differentiate into an endothelial phenotype, enhance vascular density, and improve heart function in a rat cellular cardiomyoplasty model [J].
Davani, S ;
Marandin, A ;
Mersin, N ;
Royer, B ;
Kantelip, B ;
Hervé, P ;
Etievent, JP ;
Kantelip, JP .
CIRCULATION, 2003, 108 (10) :253-258
[10]  
DEJONGE MK, 1980, CARDIOVASC RES, V14, P741