A New Diffusion Variable Spatial Regularized QRRLS Algorithm

被引:3
|
作者
Chu, Yijing [1 ]
Chan, S. C. [2 ]
Zhou, Yi [3 ]
Wu, Ming [4 ]
机构
[1] South China Univ Technol, State Key Lab Subtrop Bldg Sci, Guangzhou 510641, Guangdong, Peoples R China
[2] Univ Hong Kong, Dept Elect & Elect Engn, Hong Kong, Peoples R China
[3] Univ Posts & Telecommun Chongqing, Commun & Informat Engn, Chongqing 400065, Peoples R China
[4] Inst Acoust, Key Lab Noise & Vibrat Res, Beijing 100190, Peoples R China
基金
中国国家自然科学基金;
关键词
Signal processing algorithms; Covariance matrices; Probability density function; Maximum a posteriori estimation; Adaptation models; Diffusion adaptive algorithm; variable spatial regularization; performance analysis; RECURSIVE LEAST-SQUARES; LMS; STRATEGIES; OPTIMIZATION; ADAPTATION;
D O I
10.1109/LSP.2020.2999883
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper develops a framework for the design of diffusion adaptive algorithms, where a network of nodes aim to estimate system parameters from the collected distinct local data stream. We explore the time and spatial knowledge of system responses and model their evolution in both time and spatial domain. A weighted maximum a posteriori probability (MAP) is used to derive an adaptive estimator, where recent data has more influence on statistics via weighting factors. The resulting recursive least squares (RLS) local estimate can be implemented by the QR decomposition (QRD). To mediate the distinct spatial information incorporation within neighboring estimates, a variable spatial regularization (VSR) parameter is introduced. The estimation bias and variance of the proposed algorithm are analyzed. A new diffusion VSR QRRLS (Diff-VSR-QRRLS) algorithm is derived that balances the bias and variance terms. Simulations are carried out to illustrate the effectiveness of the theoretical analysis and evaluate the performance of the proposed algorithm.
引用
收藏
页码:995 / 999
页数:5
相关论文
共 50 条
  • [31] Diffusion adagrad minimum kernel risk sensitive mean p-power loss algorithm
    Peng, Lina
    Zhang, Tao
    Wang, Shiyuan
    Huang, Gangyi
    Chen, Shanmou
    SIGNAL PROCESSING, 2023, 202
  • [32] VARIABLE STEP-SIZE DIFFUSION PROPORTIONATE AFFINE PROJECTION ALGORITHM
    Shi, Juan
    Ni, Jingen
    Chen, Xiaoping
    2016 IEEE INTERNATIONAL WORKSHOP ON ACOUSTIC SIGNAL ENHANCEMENT (IWAENC), 2016,
  • [33] A Variable Step-Size Diffusion LMS Algorithm for Distributed Estimation
    Lee, Han-Sol
    Kim, Seong-Eun
    Lee, Jae-Woo
    Song, Woo-Jin
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2015, 63 (07) : 1808 - 1820
  • [34] Convergence behavior of diffusion stochastic gradient descent algorithm
    Barani, Fatemeh
    Savadi, Abdorreza
    Yazdi, Hadi Sadoghi
    SIGNAL PROCESSING, 2021, 183
  • [35] A PROXIMAL SPLITTING APPROACH TO REGULARIZED DISTRIBUTED ADAPTIVE ESTIMATION IN DIFFUSION NETWORKS
    Wee, Wemer M.
    Yamada, Isao
    2013 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2013, : 5420 - 5424
  • [36] Component-wise variable step-size diffusion least mean square algorithm for distributed estimation
    Huang, Wei
    Li, Lin Dong
    Yao, Xin-Wei
    IET SIGNAL PROCESSING, 2019, 13 (03) : 309 - 320
  • [37] New Variable Precision Reduction Algorithm for Decision Tables
    Li, Xu
    Xiao, Hongping
    Tang, Jianguo
    IEEE ACCESS, 2023, 11 : 42701 - 42712
  • [38] A variable forgetting factor diffusion recursive least squares algorithm for distributed estimation
    Chu, Y. J.
    Mak, C. M.
    SIGNAL PROCESSING, 2017, 140 : 219 - 225
  • [39] Regularized Diffusion Adaptation via Conjugate Smoothing
    Vlaski, Stefan
    Vandenberghe, Lieven
    Sayed, Ali H.
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2022, 67 (05) : 2343 - 2358
  • [40] Diffusion least mean kurtosis algorithm and its performance analysis
    Qing, Zhu
    Ni, Jingen
    Chen, Jie
    So, H. C.
    INFORMATION SCIENCES, 2023, 638