A New Diffusion Variable Spatial Regularized QRRLS Algorithm

被引:3
|
作者
Chu, Yijing [1 ]
Chan, S. C. [2 ]
Zhou, Yi [3 ]
Wu, Ming [4 ]
机构
[1] South China Univ Technol, State Key Lab Subtrop Bldg Sci, Guangzhou 510641, Guangdong, Peoples R China
[2] Univ Hong Kong, Dept Elect & Elect Engn, Hong Kong, Peoples R China
[3] Univ Posts & Telecommun Chongqing, Commun & Informat Engn, Chongqing 400065, Peoples R China
[4] Inst Acoust, Key Lab Noise & Vibrat Res, Beijing 100190, Peoples R China
基金
中国国家自然科学基金;
关键词
Signal processing algorithms; Covariance matrices; Probability density function; Maximum a posteriori estimation; Adaptation models; Diffusion adaptive algorithm; variable spatial regularization; performance analysis; RECURSIVE LEAST-SQUARES; LMS; STRATEGIES; OPTIMIZATION; ADAPTATION;
D O I
10.1109/LSP.2020.2999883
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper develops a framework for the design of diffusion adaptive algorithms, where a network of nodes aim to estimate system parameters from the collected distinct local data stream. We explore the time and spatial knowledge of system responses and model their evolution in both time and spatial domain. A weighted maximum a posteriori probability (MAP) is used to derive an adaptive estimator, where recent data has more influence on statistics via weighting factors. The resulting recursive least squares (RLS) local estimate can be implemented by the QR decomposition (QRD). To mediate the distinct spatial information incorporation within neighboring estimates, a variable spatial regularization (VSR) parameter is introduced. The estimation bias and variance of the proposed algorithm are analyzed. A new diffusion VSR QRRLS (Diff-VSR-QRRLS) algorithm is derived that balances the bias and variance terms. Simulations are carried out to illustrate the effectiveness of the theoretical analysis and evaluate the performance of the proposed algorithm.
引用
收藏
页码:995 / 999
页数:5
相关论文
共 50 条
  • [21] ADAPTIVE REGULARIZED DIFFUSION ADAPTATION OVER MULTITASK NETWORKS
    Monajemi, Sadaf
    Sanei, Saeid
    Ong, Sim-Heng
    Sayed, Ali H.
    2015 IEEE INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING, 2015,
  • [22] Diffusion Sparse Sign Algorithm with Variable Step-Size
    Chen, Feng
    Liu, Xiaoxia
    Duan, Shukai
    Wang, Lidan
    Wu, Jiagui
    CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2019, 38 (04) : 1736 - 1750
  • [23] New Variable Regularized Partial Update Affine Projection Algorithms for Distributed Estimation
    Chu, Y. J.
    Mak, C. M.
    2017 14TH INTERNATIONAL SYMPOSIUM ON PERVASIVE SYSTEMS, ALGORITHMS AND NETWORKS & 2017 11TH INTERNATIONAL CONFERENCE ON FRONTIER OF COMPUTER SCIENCE AND TECHNOLOGY & 2017 THIRD INTERNATIONAL SYMPOSIUM OF CREATIVE COMPUTING (ISPAN-FCST-ISCC), 2017, : 325 - 330
  • [24] A variable tap-length DILMS algorithm with variable parameters for wireless sensor networks
    Azarnia, Ghanbar
    Hassanlou, Mostafa
    INTERNATIONAL JOURNAL OF SENSOR NETWORKS, 2021, 36 (02) : 97 - 107
  • [25] A New Regularized Transform-Domain NLMS Adaptive Filtering Algorithm
    Chan, S. C.
    Chu, Y. J.
    Zhang, Z. G.
    PROCEEDINGS OF THE 2010 IEEE ASIA PACIFIC CONFERENCE ON CIRCUIT AND SYSTEM (APCCAS), 2010, : 696 - 699
  • [26] Diffusion Affine Projection Algorithm for Multitask Networks
    Gogineni, Vinay Chakravarthi
    Chakraborty, Mrityunjoy
    2018 ASIA-PACIFIC SIGNAL AND INFORMATION PROCESSING ASSOCIATION ANNUAL SUMMIT AND CONFERENCE (APSIPA ASC), 2018, : 201 - 206
  • [27] A New Variable Regularized QR Decomposition-Based Recursive Least M-Estimate Algorithm-Performance Analysis and Acoustic Applications
    Chan, S. C.
    Chu, Y. J.
    Zhang, Z. G.
    Tsui, K. M.
    IEEE TRANSACTIONS ON AUDIO SPEECH AND LANGUAGE PROCESSING, 2013, 21 (05): : 907 - 922
  • [28] On Reducing the Communication Cost of the Diffusion LMS Algorithm
    Harrane, Ibrahim El Khalil
    Flamary, Remi
    Richard, Cedric
    IEEE TRANSACTIONS ON SIGNAL AND INFORMATION PROCESSING OVER NETWORKS, 2019, 5 (01): : 100 - 112
  • [29] A new variable length NLMS adaptive algorithm
    Mayyas, Khaled
    AbuSeba, Hani A.
    DIGITAL SIGNAL PROCESSING, 2014, 34 : 82 - 91
  • [30] The Diffusion Entropy Stochastic Gradient Descent Algorithm With Quasi-Optimal Combiners: Formulation and Analysis
    Xia, Wei
    Xia, Guoqing
    Chen, Junbin
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2022, 70 : 3948 - 3963