A Regularity Criterion for the Navier-Stokes Equations in the Multiplier Spaces

被引:1
作者
Zhu, Xiang'ou [1 ,2 ]
机构
[1] Wenzhou Univ, Coll Phys & Elect Informat Engn, Wenzhou 325035, Zhejiang, Peoples R China
[2] Key Lab Low Voltage Apparat Intellectual Technol, Wenzhou 325035, Peoples R China
关键词
WEAK SOLUTIONS; SCHRODINGER OPERATOR; PRESSURE; TERMS; BOUNDEDNESS;
D O I
10.1155/2012/682436
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We exhibit a regularity condition concerning the pressure gradient for the Navier-Stokes equations in a special class. It is shown that if the pressure gradient belongs to L-2/(2 r) ((0, T); M(H-r (R-3) -> H-r (R-3))), where M(H-r (R-3) -> H-r (R-3)) is the multipliers between Sobolev spaces whose definition is given later for 0 < r < 1, then the Leray-Hopf weak solution to the Navier-Stokes equations is actually regular.
引用
收藏
页数:7
相关论文
共 33 条
[21]  
SERRIN J, 1962, ARCH RATION MECH AN, V9, P187
[22]   ON THE REGULARITY OF THE PRESSURE OF WEAK SOLUTIONS OF NAVIER-STOKES EQUATIONS [J].
SOHR, H ;
VONWAHL, W .
ARCHIV DER MATHEMATIK, 1986, 46 (05) :428-439
[23]  
Sohr H., 2001, Birkhauser Advanced Texts Basler Lehrbucher, DOI DOI 10.1007/978-3-0348-0551-3
[25]   On a Serrin-type regularity criterion for the Navier-Stokes equations in terms of the pressure [J].
Struwe, Michael .
JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2007, 9 (02) :235-242
[26]   A new regularity criterion for weak solutions to the Navier-Stokes equations [J].
Zhou, Y .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2005, 84 (11) :1496-1514
[27]   On regularity criteria in terms of pressure for the Navier-Stokes equations in R3 [J].
Zhou, Y .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2006, 134 (01) :149-156
[28]   A new regularity criterion for the navier-stokes equations in terms of the direction of vorticity [J].
Zhou, Y .
MONATSHEFTE FUR MATHEMATIK, 2005, 144 (03) :251-257
[29]   Regularity criteria in terms of pressure for the 3-D Navier-Stokes equations in a generic domain [J].
Zhou, Y .
MATHEMATISCHE ANNALEN, 2004, 328 (1-2) :173-192
[30]  
Zhou Y, 2006, Z ANGEW MATH PHYS, V57, P384, DOI 10.1007/s00033-005-0021-x