Adaptable neural networks for unsupervised video object segmentation of stereoscopic sequences

被引:0
|
作者
Doulamis, AD [1 ]
Ntalianis, KS [1 ]
Doulamis, ND [1 ]
Kollias, SD [1 ]
机构
[1] Natl Tech Univ Athens, Dept Elect & Comp Engn, GR-15773 Athens, Greece
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
An adaptive neural network architecture is proposed in this paper, for efficient video object segmentation and tracking in stereoscopic sequences. The scheme includes: (A) A retraining algorithm that optimally adapts the network weights to the cur-rent conditions and simultaneously minimally degrades the previous network knowledge, (B) A semantically meaningful object extraction module for constructing the retraining set of the current conditions and (C) a decision mechanism, which detects the time instances when network retraining is required. The retraining algorithm results in the minimization of a convex function subject to linear constraints. Furthermore description of the current conditions is achieved by appropriate combination of color and depth information. Experimental results on real life video sequences indicate the promising performance of the proposed adaptive neural network-based video object segmentation scheme.
引用
收藏
页码:1060 / 1066
页数:7
相关论文
共 50 条
  • [41] Object Segmentation from Long Video Sequences
    Luo, Bing
    Li, Hongliang
    Song, Tiecheng
    Huang, Chao
    MM'15: PROCEEDINGS OF THE 2015 ACM MULTIMEDIA CONFERENCE, 2015, : 1187 - 1190
  • [42] VabCut: A Video Extension of GrabCut for Unsupervised Video Foreground Object Segmentation
    Poullot, Sebastien
    Satoh, Shin'Ichi
    PROCEEDINGS OF THE 2014 9TH INTERNATIONAL CONFERENCE ON COMPUTER VISION, THEORY AND APPLICATIONS (VISAPP 2014), VOL 2, 2014, : 362 - 371
  • [43] Unsupervised Segmentation of Stereoscopic Video Objects: Constrained Segmentation Fusion Versus Greedy Active Contours
    Ntalianis, Klimis S.
    Doulamis, Anastasios D.
    Doulamis, Nikolaos D.
    Mastorakis, Nikos E.
    Drigas, Athanasios S.
    JOURNAL OF SIGNAL PROCESSING SYSTEMS FOR SIGNAL IMAGE AND VIDEO TECHNOLOGY, 2015, 81 (02): : 153 - 181
  • [44] Unsupervised Segmentation of Stereoscopic Video Objects: Constrained Segmentation Fusion Versus Greedy Active Contours
    Klimis S. Ntalianis
    Anastasios D. Doulamis
    Nikolaos D. Doulamis
    Nikos E. Mastorakis
    Athanasios S. Drigas
    Journal of Signal Processing Systems, 2015, 81 : 153 - 181
  • [45] Combining neural networks and clustering techniques for object recognition in indoor video sequences
    Serratosa, Francesc
    Gomez, Nicolas Amezquita
    Alquezar, Rene
    PROGRESS IN PATTERN RECOGNITION, IMAGE ANALYSIS AND APPLICATIONS, PROCEEDINGS, 2006, 4225 : 399 - 405
  • [46] Unsupervised object-based detection of dissolves in video sequences
    Smith, M
    Khotanzad, A
    6TH IEEE SOUTHWEST SYMPOSIUM ON IMAGE ANALYSIS AND INTERPRETATION, 2004, : 31 - 35
  • [47] Learning Unsupervised Video Object Segmentation through Visual Attention
    Wang, Wenguan
    Song, Hongmei
    Zhao, Shuyang
    Shen, Jianbing
    Zhao, Sanyuan
    Hoi, Steven C. H.
    Ling, Haibin
    2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 3059 - 3069
  • [48] Unsupervised Video Object Segmentation via Prototype Memory Network
    Yonsei University, Korea, Republic of
    不详
    Proc. - IEEE Winter Conf. Appl. Comput. Vis., WACV, 1600, (5913-5923):
  • [49] Multi-Attention Network for Unsupervised Video Object Segmentation
    Zhang, Guifang
    Wong, Hon-Cheng
    Lo, Sio-Long
    IEEE SIGNAL PROCESSING LETTERS, 2021, 28 : 71 - 75
  • [50] Learning Motion Guidance for Efficient Unsupervised Video Object Segmentation
    Zhao Z.-C.
    Zhang K.-H.
    Fan J.-Q.
    Liu Q.-S.
    Zidonghua Xuebao/Acta Automatica Sinica, 2023, 49 (04): : 872 - 880