On orienting graphs for connectivity: Projective planes and Halin graphs

被引:0
作者
Cheriyan, Joseph [1 ]
Zou, Chenglong [2 ]
机构
[1] Univ Waterloo, Dept Combinator & Optimizat, Waterloo, ON N2L 3G1, Canada
[2] Univ British Columbia, Dept Math, Vancouver, BC, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Graph connectivity; Graph orientations; Element connectivity; Hypergraphs; Projective planes; Halin graphs; ORIENTATIONS;
D O I
10.1016/j.orl.2012.06.004
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
Nash-Williams proved that the edges of a k-edge connected (undirected) graph can be oriented such that the resulting directed graph is left perpendiculark/2right perpendicular-edge connected. A long-standing goal in the area is to obtain analogous results for other types of connectivity, such as node connectivity, element connectivity, and hypergraph edge connectivity. We focus on two special classes of graphs, namely, incidence graphs of projective planes and (generalized) Halin graphs, and we prove some analogs of Nash-Williams' result for these classes. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:337 / 341
页数:5
相关论文
共 50 条
[31]   Connectivity of Triangulation Flip Graphs in the Plane (Part I: Edge Flips) [J].
Wagner, Uli ;
Welzl, Emo .
PROCEEDINGS OF THE THIRTY-FIRST ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS (SODA'20), 2020, :2823-2841
[32]   Connectivity of Triangulation Flip Graphs in the Plane (Part I: Edge Flips) [J].
Wagner, Uli ;
Welzl, Emo .
PROCEEDINGS OF THE 2020 ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, SODA, 2020, :2823-2841
[33]   On embeddings of the flag geometries of projective planes in finite projective spaces [J].
Thas, JA ;
Van Maldeghem, H .
DESIGNS CODES AND CRYPTOGRAPHY, 1999, 17 (1-3) :97-104
[34]   On Embeddings of the Flag Geometries of Projective Planes in Finite Projective Spaces [J].
Joseph A. Thas ;
Hendrik Van Maldeghem .
Designs, Codes and Cryptography, 1999, 17 :97-104
[35]   Projective Planes, Coverings and a Network Problem [J].
Jürgen Bierbrauer ;
Stefano Marcugini ;
Fernanda Pambianco .
Designs, Codes and Cryptography, 2003, 29 :71-89
[36]   Projective planes, coverings and a network problem [J].
Bierbrauer, J ;
Marcugini, S ;
Pambianco, F .
DESIGNS CODES AND CRYPTOGRAPHY, 2003, 29 (1-3) :71-89
[37]   THE QUASIREGULAR PROJECTIVE PLANES OF ORDER 16 [J].
Roeder, Marc .
GLASNIK MATEMATICKI, 2008, 43 (02) :231-242
[38]   A note on the Bricard property of projective planes [J].
Szilasi, Zoltan .
ANNALES MATHEMATICAE ET INFORMATICAE, 2024, 60 :151-158
[39]   On the balanced upper chromatic number of cyclic projective planes and projective spaces [J].
Araujo-Pardo, Gabriela ;
Kiss, Gyoergy ;
Montejano, Amanda .
DISCRETE MATHEMATICS, 2015, 338 (12) :2562-2571
[40]   An algorithm for recognizing Pfaffian graphs of a type of bipartite graphs [J].
Feng, Xing ;
Zhang, Lianzhu ;
Zhang, Mingzu .
JOURNAL OF COMBINATORIAL OPTIMIZATION, 2018, 35 (03) :740-753