Strong Plasmon Reflection at Nanometer-Size Gaps in Monolayer Graphene on SiC

被引:75
作者
Chen, Jianing [1 ]
Nesterov, Maxim L. [2 ,3 ]
Nikitin, Alexey Yu [1 ,4 ]
Thongrattanasiri, Sukosin [5 ,6 ]
Alonso-Gonzalez, Pablo [1 ]
Slipchenko, Tetiana M. [2 ,3 ]
Speck, Florian [7 ]
Ostler, Markus [8 ]
Seyller, Thomas [8 ]
Crassee, Iris [9 ]
Koppens, Frank H. L. [10 ]
Martin-Moreno, Luis [2 ,3 ]
Garcia de Abajo, F. Javier [5 ,10 ]
Kuzmenko, Alexey B. [9 ]
Hillenbrand, Rainer [1 ,4 ]
机构
[1] CIC NanoGUNE Consolider, Donostia San Sebastian 20018, Spain
[2] Univ Zaragoza, CSIC, Inst Ciencia Mat Aragon, E-50009 Zaragoza, Spain
[3] Univ Zaragoza, CSIC, Dept Fis Mat Condensada, E-50009 Zaragoza, Spain
[4] IKERBASQUE Basque Fdn Sci, Bilbao 48011, Spain
[5] ICREA, Barcelona, Spain
[6] Kasetsart Univ, Dept Phys, Bangkok 10900, Thailand
[7] Univ Erlangen Nurnberg, Dept Phys, D-91058 Erlangen, Germany
[8] Tech Univ Chemnitz, Inst Phys Tech Phys, D-09126 Chemnitz, Germany
[9] Univ Geneva, Dept Phys Mat Condensee, CH-1211 Geneva, Switzerland
[10] ICFO Inst Ciencies Foton, Barcelona 08860, Spain
基金
瑞士国家科学基金会; 欧洲研究理事会;
关键词
Graphene; graphene plasmons; plasmon reflection; SiC; near-field microscopy; s-SNOM; SCATTERING; FILMS;
D O I
10.1021/nl403622t
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We employ tip-enhanced infrared near-field microscopy to study the plasmonic properties of epitaxial quasi-free-standing monolayer graphene on silicon carbide. The near-field images reveal propagating graphene plasmons, as well as a strong plasmon reflection at gaps in the graphene layer, which appear at the steps between the SiC terraces. When the step height is around 1.5 nm, which is two orders of magnitude smaller than the plasmon wavelength, the reflection signal reaches 20% of its value at graphene edges, and it approaches 50% for step heights as small as 5 nm. This intriguing observation is corroborated by numerical simulations and explained by the accumulation of a line charge at the graphene termination. The associated electromagnetic fields at the graphene termination decay within a few nanometers, thus preventing efficient plasmon transmission across nanoscale gaps. Our work suggests that plasmon propagation in graphene-based circuits can be tailored using extremely compact nanostructures, such as ultranarrow gaps: It also demonstrates that tip-enhanced near-field microscopy is a powerful contactless tool to examine nanoscale defects in graphene.
引用
收藏
页码:6210 / 6215
页数:6
相关论文
共 29 条
[1]  
Bae S, 2010, NAT NANOTECHNOL, V5, P574, DOI [10.1038/nnano.2010.132, 10.1038/NNANO.2010.132]
[2]   Electronic confinement and coherence in patterned epitaxial graphene [J].
Berger, Claire ;
Song, Zhimin ;
Li, Xuebin ;
Wu, Xiaosong ;
Brown, Nate ;
Naud, Cecile ;
Mayou, Didier ;
Li, Tianbo ;
Hass, Joanna ;
Marchenkov, Atexei N. ;
Conrad, Edward H. ;
First, Phillip N. ;
de Heer, Wait A. .
SCIENCE, 2006, 312 (5777) :1191-1196
[3]   Optical nano-imaging of gate-tunable graphene plasmons [J].
Chen, Jianing ;
Badioli, Michela ;
Alonso-Gonzalez, Pablo ;
Thongrattanasiri, Sukosin ;
Huth, Florian ;
Osmond, Johann ;
Spasenovic, Marko ;
Centeno, Alba ;
Pesquera, Amaia ;
Godignon, Philippe ;
Zurutuza Elorza, Amaia ;
Camara, Nicolas ;
Javier Garcia de Abajo, F. ;
Hillenbrand, Rainer ;
Koppens, Frank H. L. .
NATURE, 2012, 487 (7405) :77-81
[4]   Intrinsic Terahertz Plasmons and Magnetoplasmons in Large Scale Monolayer Graphene [J].
Crassee, I. ;
Orlita, M. ;
Potemski, M. ;
Walter, A. L. ;
Ostler, M. ;
Seyller, Th. ;
Gaponenko, I. ;
Chen, J. ;
Kuzmenko, A. B. .
NANO LETTERS, 2012, 12 (05) :2470-2474
[5]  
Emtsev KV, 2009, NAT MATER, V8, P203, DOI [10.1038/nmat2382, 10.1038/NMAT2382]
[6]   Space-time dispersion of graphene conductivity [J].
Falkovsky, L. A. ;
Varlamov, A. A. .
EUROPEAN PHYSICAL JOURNAL B, 2007, 56 (04) :281-284
[7]   Gate-tuning of graphene plasmons revealed by infrared nano-imaging [J].
Fei, Z. ;
Rodin, A. S. ;
Andreev, G. O. ;
Bao, W. ;
McLeod, A. S. ;
Wagner, M. ;
Zhang, L. M. ;
Zhao, Z. ;
Thiemens, M. ;
Dominguez, G. ;
Fogler, M. M. ;
Castro Neto, A. H. ;
Lau, C. N. ;
Keilmann, F. ;
Basov, D. N. .
NATURE, 2012, 487 (7405) :82-85
[8]  
Fei Z., 2013, NAT NANOTECHNOL, DOI [10.1038/NNANO.2013.197, DOI 10.1038/NNAN0.2013.197]
[9]  
Grigorenko AN, 2012, NAT PHOTONICS, V6, P749, DOI [10.1038/NPHOTON.2012.262, 10.1038/nphoton.2012.262]
[10]  
Hanson G. W., 2008, J APPL PHYS, P103