Center-focus problem and limit cycles bifurcations for a class of cubic Kolmogorov model

被引:17
作者
Du, Chaoxiong [1 ]
Huang, Wentao [2 ]
机构
[1] Hunan Shaoyang Univ, Dept Math, Shaoyang 422000, Hunan, Peoples R China
[2] Guilin Univ Elect Technol, Sch Math & Computat Sci, Guilin 541004, Guangxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Kolmogorov model; Positive equilibrium points; Limit cycles; Poincare succession function; Stable; Center problem;
D O I
10.1007/s11071-012-0703-9
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
The problem of limit cycles for the Kolmogorov model is interesting and significant both in theory and applications. In this paper, we investigate the center-focus problems and limit cycles bifurcations for a class of cubic Kolmogorov model with three positive equilibrium points. The sufficient and necessary condition that each positive equilibrium point becomes a center is given. At the same time, we show that each one of point (1,2) and point (2,1) can bifurcate 1 small limit cycles under a certain condition, and 3 limit cycle can occur near (1,1) at the same step. Among the above limit cycles, 4 limit cycles can be stable. The limit cycles bifurcations problem for Kolmogorov model with several positive equilibrium points are hardly seen in published references. Our result is new and interesting.
引用
收藏
页码:197 / 206
页数:10
相关论文
共 8 条
[1]   ANALYSIS OF NONLINEAR OSCILLATORS UNDER STOCHASTIC EXCITATION BY THE FOKKER-PLANCK-KOLMOGOROV EQUATION [J].
BARATTA, A ;
ZUCCARO, G .
NONLINEAR DYNAMICS, 1994, 5 (03) :255-271
[2]   The bifurcation of limit cycles in Zn-equivariant vector fields [J].
Du, Chaoxiong ;
Liu, Yirong ;
Chen, Haibo .
APPLIED MATHEMATICS AND COMPUTATION, 2010, 217 (05) :2041-2056
[3]  
[杜超雄 DU Chaoxiong], 2007, [工程数学学报, Chinese Journal of Engineering Mathematics], V24, P746
[4]   Limit cycles in a general Kolmogorov model [J].
Huang, XC ;
Zhu, LM .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2005, 60 (08) :1393-1414
[5]   Theory of center-focus for a class of higher-degree critical points and infinite points [J].
Liu, YR .
SCIENCE IN CHINA SERIES A-MATHEMATICS, 2001, 44 (03) :365-377
[6]   Limit cycles of a cubic Kolmogorov system [J].
Lloyd, NG ;
Pearson, JM ;
Saez, E ;
Szanto, I .
APPLIED MATHEMATICS LETTERS, 1996, 9 (01) :15-18
[7]   A cubic Kolmogorov system with six limit cycles [J].
Lloyd, NG ;
Pearson, JM ;
Saéz, E ;
Szántó, I .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2002, 44 (3-4) :445-455
[8]   The limit cycles of a general Kolmogorov system [J].
Yuan, Yueding ;
Chen, Haibo ;
Du, Chaoxiong ;
Yuan, Yuejin .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 392 (02) :225-237