Nonradiating photonics with resonant dielectric nanostructures

被引:383
作者
Koshelev, Kirill [2 ,3 ]
Favraud, Gael [1 ]
Bogdanov, Andrey [3 ]
Kivshar, Yuri [2 ,3 ]
Fratalocchi, Andrea [1 ]
机构
[1] King Abdullah Univ Sci & Technol, PRIMALIGHT, Fac Elect Engn Appl Math & Computat Sci, Thuwal 239556900, Saudi Arabia
[2] Australian Natl Univ, Nonlinear Phys Ctr, Canberra, ACT 2601, Australia
[3] ITMO Univ, St Petersburg 197101, Russia
基金
俄罗斯基础研究基金会; 澳大利亚研究理事会;
关键词
radiationless states; anapoles; bound states in the continuum; dielectric meta-optics; 3RD HARMONIC-GENERATION; PROPAGATING BOUND-STATES; 2ND-HARMONIC GENERATION; INDUCED TRANSPARENCY; TRAPPED MODES; ANAPOLE MODES; CONTINUUM; LIGHT; EXCITATION; SURFACE;
D O I
10.1515/nanoph-2019-0024
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Nonradiating sources of energy have traditionally been studied in quantum mechanics and astrophysics but have received very little attention in the photonics community. This situation has changed recently due to a number of pioneering theoretical studies and remarkable experimental demonstrations of the exotic states of light in dielectric resonant photonic structures and metasurfaces, with the possibility to localize efficiently the electromagnetic fields of high intensities within small volumes of matter. These recent advances underpin novel concepts in nanophotonics and provide a promising pathway to overcome the problem of losses usually associated with metals and plasmonic materials for the efficient control of light-matter interaction at the nanoscale. This review paper provides a general background and several snapshots of the recent results in this young yet prominent research field, focusing on two types of nonradiating states of light that both have been recently at the center of many studies in all-dielectric resonant meta-optics and metasurfaces: optical anapoles and photonic bound states in the continuum. We discuss a brief history of these states in optics, as well as their underlying physics and manifestations, and also emphasize their differences and similarities. We also review some applications of such novel photonic states in both linear and nonlinear optics for the nanoscale field enhancement, a design of novel dielectric structures with high-Q resonances, nonlinear wave mixing, and enhanced harmonic generation, as well as advanced concepts for lasing and optical neural networks.
引用
收藏
页码:725 / 745
页数:21
相关论文
共 167 条
  • [1] ACCELERATION WITHOUT RADIATION
    ABBOTT, TA
    GRIFFITHS, DJ
    [J]. AMERICAN JOURNAL OF PHYSICS, 1985, 53 (12) : 1203 - 1211
  • [2] THE ELECTROMAGNETIC-FIELD OF ELEMENTARY TIME-DEPENDENT TOROIDAL SOURCES
    AFANASIEV, GN
    STEPANOVSKY, YP
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1995, 28 (16): : 4565 - 4580
  • [3] Some remarkable charge-current configurations
    Afanasiev, GN
    Dubovik, VM
    [J]. PHYSICS OF PARTICLES AND NUCLEI, 1998, 29 (04) : 366 - 391
  • [4] [Anonymous], 1984, WAVES FIELDS OPTOELE
  • [5] [Anonymous], NAT PHOTONICS
  • [6] [Anonymous], 2018, J PHYS D APPL PHYS
  • [7] [Anonymous], ARXIV181200892
  • [8] [Anonymous], ARXIV180601932
  • [9] [Anonymous], ARXIV181111396
  • [10] [Anonymous], PHYS REV A