Sharp oscillation criteria for second-order neutral delay differential equations

被引:43
|
作者
Bohner, Martin [1 ]
Grace, Said R. [2 ]
Jadlovska, Irena [3 ]
机构
[1] Missouri Univ Sci & Technol, Dept Math & Stat, Rolla, MO USA
[2] Cairo Univ, Fac Engn, Dept Engn Math, Giza, Egypt
[3] Tech Univ Kosice, Fac Elect Engn & Informat, Dept Math & Theoret Informat, B Nemcovej 32, Kosice 04200, Slovakia
关键词
delay; half-linear neutral differential equation; oscillation; second order;
D O I
10.1002/mma.6677
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is a continuation of a recent work by the authors on the oscillatory properties of second-order half-linear neutral delay differential equations. Providing a new apriori bound for a nonoscillatory solution, we present a new oscillation criterion, which essentially improves the existing ones. In a particular nonneutral case, the obtained oscillation constant is unimprovable.
引用
收藏
页码:10041 / 10053
页数:13
相关论文
共 50 条
  • [31] On the sharp oscillation criteria for half-linear second-order differential equations with several delay arguments
    Chatzarakis, George E.
    Grace, Said R.
    Jadlovska, Irena
    APPLIED MATHEMATICS AND COMPUTATION, 2021, 397 (397)
  • [32] OSCILLATION FOR SECOND-ORDER DIFFERENTIAL EQUATIONS WITH DELAYOSCILLATION FOR SECOND-ORDER DIFFERENTIAL EQUATIONS WITH DELAY
    Baculikova, Blanka
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2018,
  • [33] Oscillation criteria for second order quasi-linear neutral delay differential equations
    Xu, Run
    Meng, Fanwei
    APPLIED MATHEMATICS AND COMPUTATION, 2007, 192 (01) : 216 - 222
  • [34] Nonoscillation and Oscillation Criteria for a Class of Second-Order Nonlinear Neutral Delay Differential Equations with Positive and Negative Coefficients
    Guo, Rongrong
    Huang, Qingdao
    Tian, Haifeng
    AXIOMS, 2022, 11 (06)
  • [35] Oscillation of second-order neutral differential equations
    Li, Tongxing
    Rogovchenko, Yuriy V.
    MATHEMATISCHE NACHRICHTEN, 2015, 288 (10) : 1150 - 1162
  • [36] Oscillation of Second-Order Neutral Differential Equations
    Li, Tongxing
    Rogovchenko, Yuri V.
    Zhang, Chenghui
    FUNKCIALAJ EKVACIOJ-SERIO INTERNACIA, 2013, 56 (01): : 111 - 120
  • [37] OSCILLATION CRITERIA FOR SECOND-ORDER NEUTRAL DELAY DYNAMIC EQUATIONS ON TIME SCALES
    Luhong Ye
    Annals of Applied Mathematics, 2015, 31 (02) : 236 - 245
  • [38] New oscillation criteria for second-order nonlinear neutral delay difference equations
    Saker, SH
    APPLIED MATHEMATICS AND COMPUTATION, 2003, 142 (01) : 99 - 111
  • [39] Oscillation criteria for second-order superlinear Emden-Fowler neutral differential equations
    Li, Tongxing
    Rogovchenko, Yuriy V.
    MONATSHEFTE FUR MATHEMATIK, 2017, 184 (03): : 489 - 500
  • [40] OSCILLATION RESULTS FOR SECOND-ORDER QUASI-LINEAR NEUTRAL DELAY DIFFERENTIAL EQUATIONS
    Li, Tongxing
    Sun, Shurong
    Han, Zhenlai
    Han, Bangxian
    Sun, Yibing
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2013, 42 (02): : 131 - 138