Sharp oscillation criteria for second-order neutral delay differential equations

被引:44
作者
Bohner, Martin [1 ]
Grace, Said R. [2 ]
Jadlovska, Irena [3 ]
机构
[1] Missouri Univ Sci & Technol, Dept Math & Stat, Rolla, MO USA
[2] Cairo Univ, Fac Engn, Dept Engn Math, Giza, Egypt
[3] Tech Univ Kosice, Fac Elect Engn & Informat, Dept Math & Theoret Informat, B Nemcovej 32, Kosice 04200, Slovakia
关键词
delay; half-linear neutral differential equation; oscillation; second order;
D O I
10.1002/mma.6677
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is a continuation of a recent work by the authors on the oscillatory properties of second-order half-linear neutral delay differential equations. Providing a new apriori bound for a nonoscillatory solution, we present a new oscillation criterion, which essentially improves the existing ones. In a particular nonneutral case, the obtained oscillation constant is unimprovable.
引用
收藏
页码:10041 / 10053
页数:13
相关论文
共 22 条
[1]  
Agarwal R. P., 2003, SERIES MATH ANAL APP, V5
[2]   Some remarks on oscillation of second order neutral differential equations [J].
Agarwal, Ravi P. ;
Zhang, Chenghui ;
Li, Tongxing .
APPLIED MATHEMATICS AND COMPUTATION, 2016, 274 :178-181
[3]   Oscillation of second-order Emden-Fowler neutral delay differential equations [J].
Agarwal, Ravi P. ;
Bohner, Martin ;
Li, Tongxing ;
Zhang, Chenghui .
ANNALI DI MATEMATICA PURA ED APPLICATA, 2014, 193 (06) :1861-1875
[4]  
Agarwal RP., 2002, OSCILLATION THEORY 2, DOI [10.1007/978-94-017-2515-6, DOI 10.1007/978-94-017-2515-6]
[5]  
[Anonymous], 2004, Nonoscillation and oscillation: theory for functional differential equations, DOI DOI 10.1201/9780203025741
[6]   Oscillation criteria for second-order neutral delay differential equations [J].
Bohner, Martin ;
Grace, Said R. ;
Jadlovska, Irena .
ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2017, (60) :1-12
[7]   On the Lambert W function [J].
Corless, RM ;
Gonnet, GH ;
Hare, DEG ;
Jeffrey, DJ ;
Knuth, DE .
ADVANCES IN COMPUTATIONAL MATHEMATICS, 1996, 5 (04) :329-359
[8]   Oscillation behavior of second order nonlinear neutral differential equations with deviating arguments [J].
Dong, Jiu-Gang .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2010, 59 (12) :3710-3717
[9]   Concerning the zeros of the solutions of certain differential equations [J].
Fite, William Benjamin .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1918, 19 (1-4) :341-352
[10]   An improved approach for studying oscillation of second-order neutral delay differential equations [J].
Grace, Said R. ;
Dzurina, Jozef ;
Jadlovska, Irena ;
Li, Tongxing .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 2018,