Phytotoxicity and uptake of nanoscale zero-valent iron (nZVI) by two plant species

被引:144
|
作者
Ma, Xingmao [1 ]
Gurung, Arun [1 ]
Deng, Yang [2 ]
机构
[1] So Illinois Univ, Carbondale, IL 62901 USA
[2] Montclair State Univ, Montclair, NJ 07403 USA
关键词
nZVI; Phytotoxicity; Plant uptake; NANOPARTICLES; NANOMATERIALS;
D O I
10.1016/j.scitotenv.2012.11.073
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Use of nano-scale zero valent iron (nZVI) for the treatment of various environmental pollutants has been proven successful. However, large scale introduction of engineered nanomaterials such as nZVI into the environment has recently attracted serious concerns. There is an urgent need to investigate the environmental fate and impact of nZVI due to the scope of its application. The goal of this study was to evaluate the toxicity and accumulation of bare nZVI by two commonly encountered plant species: cattail (Typha latifolia) and hybrid poplars (Populous deltoids x Populous nigra). Plant seedlings were grown hydroponically in a greenhouse and dosed with different concentrations of nZVI (0-1000 mg/L) for four weeks. The nZVI exhibited strong toxic effect on Typha at higher concentrations (>200 mg/L) but enhanced plant growth at lower concentrations. nZVI also significantly reduced the transpiration and growth of hybrid poplars at higher concentrations. Microscopic images indicated that large amount of nZVI coated on plant root surface as irregular aggregates and some nZVI penetrated into several layers of epidermal cells. Transmission electron microscope (TEM) and scanning transmission electron microscope (STEM) confirmed the internalization of nZVI by poplar root cells but similar internalization was not observed for Typha root cells. The upward transport to shoots was minimal for both plant species. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:844 / 849
页数:6
相关论文
共 50 条
  • [1] Stabilization of biosolids with nanoscale zero-valent iron (nZVI)
    Li, Xiao-qin
    Brown, Derick G.
    Zhang, Wei-xian
    JOURNAL OF NANOPARTICLE RESEARCH, 2007, 9 (02) : 233 - 243
  • [2] Stabilization of biosolids with nanoscale zero-valent iron (nZVI)
    Xiao-qin Li
    Derick G. Brown
    Wei-xian Zhang
    Journal of Nanoparticle Research, 2007, 9 : 233 - 243
  • [3] The colorful chemistry of nanoscale zero-valent iron (nZVI)
    Hua, Yilong
    Liu, Jing
    Gu, Tianhang
    Wang, Wei
    Zhang, Wei-xian
    JOURNAL OF ENVIRONMENTAL SCIENCES, 2018, 67 : 1 - 3
  • [4] The colorful chemistry of nanoscale zero-valent iron(nZVI)
    Yilong Hua
    Jing Liu
    Tianhang Gu
    Wei Wang
    Wei-xian Zhang
    Journal of Environmental Sciences, 2018, (05) : 1 - 3
  • [5] Removal of Arsenic and Selenium with Nanoscale Zero-Valent Iron (nZVI)
    Xia Xuefen
    Hua Yilong
    Huang Xiaoyue
    Ling Lan
    Zhang Weixian
    ACTA CHIMICA SINICA, 2017, 75 (06) : 594 - 601
  • [6] Sequestration of metal cations with nanoscale zero-valent iron (nZVI)
    Li, Xiao-Qin
    Zhang, Weixian
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2007, 233
  • [7] Enrichment of uranium from wastewater with nanoscale zero-valent iron (nZVI)
    Hua, Yilong
    Wang, Wei
    Hu, Nan
    Gu, Tianhang
    Ling, Lan
    Zhang, Wei-xian
    ENVIRONMENTAL SCIENCE-NANO, 2021, 8 (03) : 666 - 674
  • [8] Structural and component evolution of nanoscale zero-valent iron (nZVI) in Water
    Liu, Airong
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2018, 256
  • [9] Mechanism of uranium uptake by nanoscale zero-valent iron
    Tsarev, Sergey
    Crane, Richard A.
    Waite, David T.
    Collins, Richard N.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2014, 248
  • [10] Nanoscale Zero-Valent Iron (nZVI) for Heavy Metal Wastewater Treatment: A Perspective
    Li, Shaolin
    Li, Lei
    Zhang, Weixian
    ENGINEERING, 2024, 36 : 16 - 20