Ricci Solitons and Geometry of Four-dimensional Non-reductive Homogeneous Spaces

被引:37
作者
Calvaruso, Giovanni [1 ]
Fino, Anna [2 ]
机构
[1] Univ Salento, Dipartimento Matemat E De Giorgi, I-73100 Lecce, Lecce Arnesano, Italy
[2] Univ Turin, Dipartimento Matemat, I-10123 Turin, Italy
来源
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES | 2012年 / 64卷 / 04期
关键词
non-reductive homogeneous spaces; pseudo-Riemannian metrics; Ricci solitons; Einstein-like metrics; LORENTZIAN MANIFOLDS; METRICS;
D O I
10.4153/CJM-2011-091-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the geometry of non-reductive four-dimensional homogeneous spaces. In particular, after describing their Levi-Civita connection and curvature properties, we classify homogeneous Ricci solitons on these spaces, proving the existence of shrinking, expanding, and steady examples. For all the non-trivial examples we find, the Ricci operator is diagonalizable.
引用
收藏
页码:778 / 804
页数:27
相关论文
共 26 条
[21]   Towards physically motivated proofs of the Poincare and geometrization conjectures [J].
Kholodenko, Arkady L. .
JOURNAL OF GEOMETRY AND PHYSICS, 2008, 58 (02) :259-290
[22]  
Komrakov BB., 2001, Lobachevskii J. Math, V8, P33
[23]   Ricci soliton solvmanifolds [J].
Lauret, Jorge .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2011, 650 :1-21
[24]   INVARIANTS OF REAL LOW DIMENSION LIE-ALGEBRAS [J].
PATERA, J ;
SHARP, RT ;
WINTERNITZ, P ;
ZASSENHAUS, H .
JOURNAL OF MATHEMATICAL PHYSICS, 1976, 17 (06) :986-994
[25]   The existence of soliton metrics for nilpotent Lie groups [J].
Payne, Tracy L. .
GEOMETRIAE DEDICATA, 2010, 145 (01) :71-88
[26]   On solutions of the Ricci curvature equation and the Einstein equation [J].
Pina, Romildo ;
Tenenblat, Keti .
ISRAEL JOURNAL OF MATHEMATICS, 2009, 171 (01) :61-76