Ricci Solitons and Geometry of Four-dimensional Non-reductive Homogeneous Spaces

被引:37
作者
Calvaruso, Giovanni [1 ]
Fino, Anna [2 ]
机构
[1] Univ Salento, Dipartimento Matemat E De Giorgi, I-73100 Lecce, Lecce Arnesano, Italy
[2] Univ Turin, Dipartimento Matemat, I-10123 Turin, Italy
来源
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES | 2012年 / 64卷 / 04期
关键词
non-reductive homogeneous spaces; pseudo-Riemannian metrics; Ricci solitons; Einstein-like metrics; LORENTZIAN MANIFOLDS; METRICS;
D O I
10.4153/CJM-2011-091-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the geometry of non-reductive four-dimensional homogeneous spaces. In particular, after describing their Levi-Civita connection and curvature properties, we classify homogeneous Ricci solitons on these spaces, proving the existence of shrinking, expanding, and steady examples. For all the non-trivial examples we find, the Ricci operator is diagonalizable.
引用
收藏
页码:778 / 804
页数:27
相关论文
共 26 条
[1]   Ricci solitons and Einstein-scalar field theory [J].
Akbar, M. M. ;
Woolgar, E. .
CLASSICAL AND QUANTUM GRAVITY, 2009, 26 (05)
[2]  
[Anonymous], 1983, SEMIRIEMANNIAN GEOME
[3]  
[Anonymous], 2010, RECENT ADV GEOMETRIC
[4]   Three-dimensional Ricci solitons which project to surfaces [J].
Baird, Paul ;
Danielo, Laurent .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2007, 608 :65-91
[5]  
Brozos-Vazquez M., ISRAEL J MA IN PRESS
[6]   Three- and four-dimensional Einstein-like manifolds and homogeneity [J].
Bueken, P ;
Vanhecke, L .
GEOMETRIAE DEDICATA, 1999, 75 (02) :123-136
[7]   Einstein-like metrics on three-dimensional homogeneous Lorentzian manifolds [J].
Calvaruso, G. .
GEOMETRIAE DEDICATA, 2007, 127 (01) :99-119
[8]   Ricci solitons on Lorentzian Walker three-manifolds [J].
Calvaruso, G. ;
De Leo, B. .
ACTA MATHEMATICA HUNGARICA, 2011, 132 (03) :269-293
[9]   THREE-DIMENSIONAL SEMI-SYMMETRIC HOMOGENEOUS LORENTZIAN MANIFOLDS [J].
Calvaruso, G. .
ACTA MATHEMATICA HUNGARICA, 2008, 121 (1-2) :157-170
[10]  
Calvaruso G., ARXIV11116384