RAFT controlled synthesis of graphene/polymer hydrogel with enhanced mechanical property for pH-controlled drug release

被引:69
作者
Liu, Jingquan [1 ]
Cui, Liang [1 ]
Kong, Na [1 ]
Barrow, Colin J. [2 ]
Yang, Wenrong [2 ]
机构
[1] Qingdao Univ, Coll Chem Chem & Environm Engn, Growing Base State Key Lab, Lab Fiber Mat & Modern Textile, Qingdao 266071, Peoples R China
[2] Deakin Univ, Ctr Chem & Biotechnol, Geelong, Vic 3217, Australia
关键词
RAFT polymerization; Graphene; pH sensitive hydrogel; Diazonium salt; Controlled drug release; WALLED CARBON NANOTUBES; COMPOSITE FILMS; OXIDE; GRAPHITE; SHEETS; FUNCTIONALIZATION; NANOCOMPOSITE; CONDUCTIVITY; CHEMISTRY; MEDICINE;
D O I
10.1016/j.eurpolymj.2013.10.015
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
A pH-sensitive, mechanically strong and thermally stable graphene/poly (acrylic acid) (graphene/PAA) hydrogel was prepared via reversible addition fragmentation transfer (RAFT) polymerizations in the presence of a cross-linking agent. The RAFT agent was covalently coupled onto graphene basal planes via an esterification reaction, with benzoic acid functionalities pre-attached on graphene with its aryl diazonium salt precursor. AFM and SEM analysis revealed the successful preparation of single layered graphene sheets and graphene/polymer hydrogels with pH controlled porous structures. Attenuated total reflection infrared (ATR-IR) and thermogravimetric analyzer (TGA) verified the successful step-wise preparation of graphene/PAA hydrogel. This graphene/PAA hydrogel was pH-sensitive and more mechanically elastic than the PAA hydrogel prepared without graphene. The pH sensitivity of the hydrogel was further utilized for controlled drug release. Doxorubicin was chosen as a model drug and loaded into the hydrogels. The drug loading and release experiment indicated that this hydrogel can be used to efficiently control drug release in the intestine environment (pH = 7.4), better than release in a more acidic environment. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:9 / 17
页数:9
相关论文
共 59 条
[1]   Graphene-containing thermoresponsive nanocomposite hydrogels of poly(N-isopropylacrylamide) prepared by frontal polymerization [J].
Alzari, Valeria ;
Nuvoli, Daniele ;
Scognamillo, Sergio ;
Piccinini, Massimo ;
Gioffredi, Emilia ;
Malucelli, Giulio ;
Marceddu, Salvatore ;
Sechi, Mario ;
Sanna, Vanna ;
Mariani, Alberto .
JOURNAL OF MATERIALS CHEMISTRY, 2011, 21 (24) :8727-8733
[2]   Graphene oxide/conducting polymer composite hydrogels [J].
Bai, Hua ;
Sheng, Kaixuan ;
Zhang, Pengfei ;
Li, Chun ;
Shi, Gaoquan .
JOURNAL OF MATERIALS CHEMISTRY, 2011, 21 (46) :18653-18658
[3]   A pH-sensitive graphene oxide composite hydrogel [J].
Bai, Hua ;
Li, Chun ;
Wang, Xiaolin ;
Shi, Gaoquan .
CHEMICAL COMMUNICATIONS, 2010, 46 (14) :2376-2378
[4]   Pyridine-Functionalized Single-Walled Carbon Nanotubes as Gelators for Poly(acrylic acid) Hydrogels [J].
Bayazit, Mustafa K. ;
Clarke, Lucinda S. ;
Coleman, Karl S. ;
Clarke, Nigel .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2010, 132 (44) :15814-15819
[5]   A facile "graft from" method to prepare molecular-level dispersed graphene-polymer composites [J].
Cui, Liang ;
Liu, Jingquan ;
Wang, Rui ;
Liu, Zhen ;
Yang, Wenrong .
JOURNAL OF POLYMER SCIENCE PART A-POLYMER CHEMISTRY, 2012, 50 (21) :4423-4432
[6]   A stimuli-responsive hydrogel for doxorubicin delivery [J].
Dadsetan, Mahrokh ;
Liu, Zen ;
Pumberger, Matthias ;
Giraldo, Catalina Vallejo ;
Ruesink, Terry ;
Lu, Lichun ;
Yaszemski, Michael J. .
BIOMATERIALS, 2010, 31 (31) :8051-8062
[7]   A NOVEL-APPROACH FOR PREPARATION OF PH-SENSITIVE HYDROGELS FOR ENTERIC DRUG DELIVERY [J].
DONG, LC ;
HOFFMAN, AS .
JOURNAL OF CONTROLLED RELEASE, 1991, 15 (02) :141-152
[8]   The chemistry of graphene oxide [J].
Dreyer, Daniel R. ;
Park, Sungjin ;
Bielawski, Christopher W. ;
Ruoff, Rodney S. .
CHEMICAL SOCIETY REVIEWS, 2010, 39 (01) :228-240
[9]   Hydrogels for tissue engineering: scaffold design variables and applications [J].
Drury, JL ;
Mooney, DJ .
BIOMATERIALS, 2003, 24 (24) :4337-4351
[10]   Covalent polymer functionalization of graphene nanosheets and mechanical properties of composites [J].
Fang, Ming ;
Wang, Kaigang ;
Lu, Hongbin ;
Yang, Yuliang ;
Nutt, Steven .
JOURNAL OF MATERIALS CHEMISTRY, 2009, 19 (38) :7098-7105