Detection of Epileptic Seizures by the Analysis of EEG Signals Using Empirical Mode Decomposition

被引:0
|
作者
Yol, Seyma [1 ]
Ozdemir, Mehmet Akif [1 ]
Akan, Aydin [1 ]
Chaparro, Luis F. [2 ]
机构
[1] Izmir Katip Celebi Univ, Dept Biomed Engn, Izmir, Turkey
[2] Univ Pittsburgh, Dept Elect & Comp Engn, Pittsburgh, PA 15261 USA
来源
2018 MEDICAL TECHNOLOGIES NATIONAL CONGRESS (TIPTEKNO) | 2018年
关键词
EEG Signal; Epileptic Seizures; Empirical Mode Decomposition; Feature Extraction; EEG Signal Classification;
D O I
暂无
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
The detection of epileptic seizure has a primary role in patient diagnosis with epilepsy. Epilepsy causes sudden and uncontrolled electrical discharges in brain cells. Recordings of the abnormal brain activities are time consuming and outcomes are very subjective, so automated detection systems are highly recommended. In this study, it is aimed to classify EEG signals for the detection of epileptic seizures using intrinsic mode functions (IMF) and feature extraction based on Empirical Mode Decomposition (EMD). These records have been acquired from the database of the Epileptology Department of Bonn University and consisting of 5 marker groups A, B, C, D, E in this study. These records taken from healthy individuals and patients are decomposed into IMFs by EMD method. Feature vectors have been extracted based on Tsallis Entropy, Renyi Entropy, Relative Entropy and Coherence methods. These features are then classified by K-Nearest Neighbors Classification (KNN), Linear Discriminant Analysis (LDA) and Naive Bayes Classification (NBC). Significant differences were determined between healthy and patient EEG data at the end of the study.
引用
收藏
页数:4
相关论文
共 50 条
  • [11] Detection of epileptic seizures on EEG signals using ANFIS classifier, autoencoders and fuzzy entropies
    Shoeibi, Afshin
    Ghassemi, Navid
    Khodatars, Marjane
    Moridian, Parisa
    Alizadehsani, Roohallah
    Zare, Assef
    Khosravi, Abbas
    Subasi, Abdulhamit
    Acharya, U. Rajendra
    Gorriz, Juan M.
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2022, 73
  • [12] Application of Empirical Mode Decomposition for Feature Extraction from EEG Signals
    Kumari, S.
    Upadhyay, R.
    Padhy, P. K.
    Kankar, P. K.
    2015 INTERNATIONAL CONFERENCE ON COMPUTER, COMMUNICATION AND CONTROL (IC4), 2015,
  • [13] Application of Empirical Mode Decomposition for Feature Extraction from EEG Signals
    Kumari, S.
    Upadhyay, R.
    Padhy, P. K.
    Kankar, P. K.
    2015 INTERNATIONAL CONFERENCE ON COMPUTING, COMMUNICATION AND SECURITY (ICCCS), 2015,
  • [14] Arrhythmia Detection on ECG Signals by Using Empirical Mode Decomposition
    Izci, Elif
    Ozdemir, Mehmet Akif
    Sadighzadeh, Reza
    Akan, Aydin
    2018 MEDICAL TECHNOLOGIES NATIONAL CONGRESS (TIPTEKNO), 2018,
  • [15] Emotion recognition from EEG signals by using multivariate empirical mode decomposition
    Mert, Ahmet
    Akan, Aydin
    PATTERN ANALYSIS AND APPLICATIONS, 2018, 21 (01) : 81 - 89
  • [16] Classification of EEG Signals Using Empirical Mode Decomposition and Lifting Wavelet Transforms
    Sokhal, Jatin
    Aggarwal, Shubham
    Garg, Bindu
    Jain, Rachna
    2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTING, COMMUNICATION AND AUTOMATION (ICCCA), 2017, : 1197 - 1202
  • [17] Forecasting Epileptic Seizures Using XGBoost Methodology and EEG Signals
    Mounika S.
    Reeja S.R.
    EAI Endorsed Transactions on Pervasive Health and Technology, 2024, 10
  • [18] Emotion recognition from EEG signals by using multivariate empirical mode decomposition
    Ahmet Mert
    Aydin Akan
    Pattern Analysis and Applications, 2018, 21 : 81 - 89
  • [19] EEG signals analysis for epileptic seizures detection using polynomial transforms, linear discriminant analysis and support vector machines
    Nkengfack, Laurent Chanel Djoufack
    Tchiotsop, Daniel
    Atangana, Romain
    Louis-Door, Valerie
    Wolf, Didier
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2020, 62
  • [20] Detection of Epileptic Seizures with Tangent Space Mapping Features of EEG Signals
    Altindis, Fatih
    Yilmaz, Bulent
    TIP TEKNOLOJILERI KONGRESI (TIPTEKNO'21), 2021,