Targeting Super-Enhancer-Driven Oncogenic Transcription by CDK7 Inhibition in Anaplastic Thyroid Carcinoma

被引:52
作者
Cao, Xinyi [1 ]
Dang, Lin [1 ]
Zheng, Xiangqian [3 ]
Lu, Yi [1 ]
Lu, Yumei [1 ]
Ji, Rongjie [1 ]
Zhang, Tianye [1 ]
Ruan, Xianhui [3 ]
Zhi, Jingtai [3 ]
Hou, Xiukun [3 ]
Yi, Xianfu [5 ]
Li, Mulin Jun [2 ]
Gu, Tingyu [4 ]
Gao, Ming [3 ]
Zhang, Lirong [1 ]
Chen, Yupeng [1 ,3 ]
机构
[1] Tianjin Med Univ, Sch Basic Med Sci,2011 Collaborat Innovat Ctr Tia, Tianjin Key Lab Med Epigenet,Dept Biochem & Mol B, Key Lab Immune Microenvironm & Dis,Minist Educ, Tianjin, Peoples R China
[2] Tianjin Med Univ, Sch Basic Med Sci, 2011 Collaborat Innovat Ctr Tianjin Med Epigenet, Tianjin Key Lab Med Epigenet,Dept Pharmacol, Tianjin, Peoples R China
[3] Tianjin Med Univ Canc Inst & Hosp, Oncol Key Lab Canc Prevent & Therapy, Natl Clin Res Ctr Canc, Dept Thyroid & Neck Tumor, Tianjin 300060, Peoples R China
[4] Chinese Acad Sci, Shanghai Inst Biol Sci, Inst Biochem & Cell Biol, Shanghai, Peoples R China
[5] Tianjin Medical Univ, Sch Biomed Engn, Tianjin, Peoples R China
基金
中国国家自然科学基金;
关键词
anaplastic thyroid carcinoma; CDK7; THZ1; transcriptional addiction; super-enhancer; CANCER STEM-CELLS; GROWTH; ADDICTION; IDENTITY; PATHWAYS; RECEPTOR; FAMILY; HEAD; MCL1;
D O I
10.1089/thy.2018.0550
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Background: Anaplastic thyroid carcinoma (ATC) is one of the most aggressive malignancies, with no effective treatment currently available. The molecular mechanisms of ATC carcinogenesis remain poorly understood. The objective of this study was to investigate the mechanisms and functions of super-enhancer (SE)-driven oncogenic transcriptional addiction in the progression of ATC and identify new drug targets for ATC treatments. Methods: High-throughput chemical screening was performed to identify new drugs inhibiting ATC cell growth. Cell viability assay, colony formation analysis, cell-cycle analysis, and animal study were used to examine the effects of drug treatments on ATC progression. Chromatin immunoprecipitation sequencing was conducted to establish a SE landscape of ATC. Integrative analysis of RNA sequencing, chromatin immunoprecipitation sequencing, and CRISPR/Cas9-mediated gene editing was used to identify THZ1 target genes. Drug combination analysis was performed to assess drug synergy. Patient samples were analyzed to evaluate candidate biomarkers of prognosis in ATC. Results: THZ1, a covalent inhibitor of cyclin-dependent kinase 7 (CDK7), was identified as a potent anti-ATC compound by high-throughput chemical screening. ATC cells, but not papillary thyroid carcinoma cells, are exceptionally sensitive to CDK7 inhibition. An integrative analysis of both gene expression profiles and SE features revealed that the SE-mediated oncogenic transcriptional amplification mediates the vulnerability of ATC cells to THZ1 treatment. Combining this integrative analysis with functional assays led to the discovery of a number of novel cancer genes of ATC, including PPP1R15A, SMG9, and KLF2. Inhibition of PPP1R15A with Guanabenz or Sephin1 greatly suppresses ATC growth. Significantly, the expression level of PPP1R15A is correlated with CDK7 expression in ATC tissue samples. Elevated expression of PPP1R15A and CDK7 are both associated with poor clinical prognosis in ATC patients. Importantly, CDK7 or PPP1R15A inhibition sensitizes ATC cells to conventional chemotherapy. Conclusions: Taken together, these findings demonstrate transcriptional addiction in ATC pathobiology and identify CDK7 and PPP1R15A as potential biomarkers and therapeutic targets for ATC.
引用
收藏
页码:809 / 823
页数:15
相关论文
共 53 条
[11]   CDK7 Inhibition Suppresses Super-Enhancer-Linked Oncogenic Transcription in MYCN-Driven Cancer [J].
Chipumuro, Edmond ;
Marco, Eugenio ;
Christensen, Camilla L. ;
Kwiatkowski, Nicholas ;
Zhang, Tinghu ;
Hatheway, Clark M. ;
Abraham, Brian J. ;
Sharma, Bandana ;
Yeung, Caleb ;
Altabef, Abigail ;
Perez-Atayde, Antonio ;
Wong, Kwok-Kin ;
Yuan, Guo-Cheng ;
Gray, Nathanael S. ;
Young, Richard A. ;
George, Rani E. .
CELL, 2014, 159 (05) :1126-1139
[12]   Targeting Transcriptional Addictions in Small Cell Lung Cancer with a Covalent CDK7 Inhibitor [J].
Christensen, Camilla L. ;
Kwiatkowski, Nicholas ;
Abraham, Brian J. ;
Carretero, Julian ;
Al-Shahrour, Fatima ;
Zhang, Tinghu ;
Chipumuro, Edmond ;
Herter-Sprie, Grit S. ;
Akbay, Esra A. ;
Altabef, Abigail ;
Zhang, Jianming ;
Shimamura, Takeshi ;
Capelletti, Marzia ;
Reibel, Jakob B. ;
Cavanaugh, Jillian D. ;
Gao, Peng ;
Liu, Yan ;
Michaelsen, Signe R. ;
Poulsen, Hans S. ;
Aref, Amir R. ;
Barbie, David A. ;
Bradner, James E. ;
George, Rani E. ;
Gray, Nathanael S. ;
Young, Richard A. ;
Won, Kwok-Kin .
CANCER CELL, 2014, 26 (06) :909-922
[13]   Role of MTA2 in human cancer [J].
Covington, Kyle R. ;
Fuqua, Suzanne A. W. .
CANCER AND METASTASIS REVIEWS, 2014, 33 (04) :921-928
[14]   New targeted therapies and other advances in the management of anaplastic thyroid cancer [J].
Deshpande, Hari A. ;
Roman, Sanziana ;
Sosa, Julie A. .
CURRENT OPINION IN ONCOLOGY, 2013, 25 (01) :44-49
[15]   The role of the transcription factor Ets1 in carcinoma [J].
Dittmer, Juergen .
SEMINARS IN CANCER BIOLOGY, 2015, 35 :20-38
[16]   Epidermal growth factor receptor as a novel therapeutic target in anaplastic thyroid carcinomas [J].
Ensinger, C ;
Spizzo, G ;
Moser, P ;
Tschoerner, I ;
Prommegger, R ;
Gabriel, M ;
Mikuz, G ;
Schmid, KW .
SIGNAL TRANSDUCTION PATHWAYS, CHROMATIN STRUCTURE, AND GENE EXPRESSION MECHANISMS AS THERAPEUTIC TARGETS, 2004, 1030 :69-77
[17]   TSPYL5 suppresses p53 levels and function by physical interaction with USP7 [J].
Epping, Mirjam T. ;
Meijer, Lars A. T. ;
Krijgsman, Oscar ;
Bos, Johannes L. ;
Pandolfi, Pier Paolo ;
Bernards, Rene .
NATURE CELL BIOLOGY, 2011, 13 (01) :102-U249
[18]   PAX8 activates a p53-p21-dependent pro-proliferative effect in high grade serous ovarian carcinoma [J].
Ghannam-Shahbari, Dima ;
Jacob, Eyal ;
Kakun, Reli Rachel ;
Wasserman, Tanya ;
Korsensky, Lina ;
Sternfeld, Ofir ;
Kagan, Juliana ;
Bublik, Debora Rosa ;
Aviel-Ronen, Sarit ;
Levanon, Keren ;
Sabo, Edmond ;
Larisch, Sarit ;
Oren, Moshe ;
Hershkovitz, Dov ;
Perets, Ruth .
ONCOGENE, 2018, 37 (17) :2213-2224
[19]   Anaplastic thyroid carcinoma: Current diagnosis and treatment [J].
Giuffrida, D ;
Gharib, H .
ANNALS OF ONCOLOGY, 2000, 11 (09) :1083-1089
[20]   Anaplastic Thyroid Carcinoma, Version 2.2015 [J].
Haddad, Robert I. ;
Lydiatt, William M. ;
Ball, Douglas W. ;
Busaidy, Naifa Lamki ;
Byrd, David ;
Callender, Glenda ;
Dickson, Paxton ;
Duh, Quan-Yang ;
Ehya, Hormoz ;
Haymart, Megan ;
Hoh, Carl ;
Hunt, Jason P. ;
Iagaru, Andrei ;
Kandeel, Fouad ;
Kopp, Peter ;
Lamonica, Dominick M. ;
McCaffrey, Judith C. ;
Moley, Jeffrey F. ;
Parks, Lee ;
Raeburn, Christopher D. ;
Ridge, John A. ;
Ringel, Matthew D. ;
Scheri, Randall P. ;
Shah, Jatin P. ;
Smallridge, Robert C. ;
Sturgeon, Cord ;
Wang, Thomas N. ;
Wirth, Lori J. ;
Hoffmann, Karin G. ;
Hughes, Miranda .
JOURNAL OF THE NATIONAL COMPREHENSIVE CANCER NETWORK, 2015, 13 (09) :1140-1150