Multi-step mechanism of carbonization in templated polyacrylonitrile derived fibers: ReaxFF model uncovers origins of graphite alignment

被引:59
作者
Saha, Biswajit [1 ]
Furmanchuk, Al'ona [1 ]
Dzenis, Yuris [2 ]
Schatz, George C. [1 ]
机构
[1] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA
[2] Univ Nebraska, Nebraska Ctr Mat & Nanosci, Dept Mech & Mat Engn, Lincoln, NE 68588 USA
基金
美国国家科学基金会;
关键词
MOLECULAR-DYNAMICS SIMULATIONS; CONTINUOUS CARBON NANOFIBERS; REACTIVE FORCE-FIELD; NANOTUBES; STABILIZATION; REINFORCEMENT; FABRICATION; YARNS; DFTB;
D O I
10.1016/j.carbon.2015.07.048
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Understanding the atomistic mechanisms of carbon structure formation during templated multi-step carbonization is very important for further optimization of carbon fiber mechanical properties. Here with use of reactive force field molecular dynamics we have elucidated the mechanism driving double-walled carbon nanotube- and graphite nanoparticle-based in situ templating of polyacrylonitrile derived fibers. Depending on carbonization temperature, the mechanism involves either physisorption (physical templating) or chemisorption (chemical templating) of the fiber medium to the template surface. In either case, strong interaction between template and medium leads to the production of aligned structures that are more robust for nanotubes than graphite. We provide a unique analysis of atomistic simulations that enables quantitative comparison of templating results with the relevant electron diffraction data. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:694 / 704
页数:11
相关论文
共 43 条
[1]   Parallel reactive molecular dynamics: Numerical methods and algorithmic techniques [J].
Aktulga, H. M. ;
Fogarty, J. C. ;
Pandit, S. A. ;
Grama, A. Y. .
PARALLEL COMPUTING, 2012, 38 (4-5) :245-259
[2]   A novel 3-D graphite structure from thermally stabilized electrospun MWCNTs/PAN nanofibril composite fabrics [J].
Ali, Ashraf A. .
INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2014, 70 (9-12) :1731-1738
[3]   A procedure for precise determination of thermal stabilization reactions in carbon fiber precursors [J].
Arbab, Shahram ;
Zeinolebadi, Ahmad .
POLYMER DEGRADATION AND STABILITY, 2013, 98 (12) :2537-2545
[4]   A CRITICAL-REVIEW OF THE STABILIZATION OF POLYACRYLONITRILE [J].
BASHIR, Z .
CARBON, 1991, 29 (08) :1081-1090
[5]   Comparison of ReaxFF, DFTB, and DFT for Phenolic Pyrolysis. 2. Elementary Reaction Paths [J].
Bauschlicher, Charles W., Jr. ;
Qi, Tingting ;
Reed, Evan J. ;
Lenfant, Antonin ;
Lawson, John W. ;
Desai, Tapan G. .
JOURNAL OF PHYSICAL CHEMISTRY A, 2013, 117 (44) :11126-11135
[6]   Bio-Inspired Carbon Nanotube-Polymer Composite Yarns with Hydrogen Bond-Mediated Lateral Interactions [J].
Beese, Allison M. ;
Sarkar, Sourangsu ;
Nair, Arun ;
Naraghi, Mohammad ;
An, Zhi ;
Moravsky, Alexander ;
Loutfy, Raouf O. ;
Buehler, Markus J. ;
Nguyen, SonBinh T. ;
Espinosa, Horacio D. .
ACS NANO, 2013, 7 (04) :3434-3446
[7]   A comparison of reinforcement efficiency of various types of carbon nanotubes in poly acrylonitrile fiber [J].
Chae, HG ;
Sreekumar, TV ;
Uchida, T ;
Kumar, S .
POLYMER, 2005, 46 (24) :10925-10935
[8]   ReaxFF reactive force field for molecular dynamics simulations of hydrocarbon oxidation [J].
Chenoweth, Kimberly ;
van Duin, Adri C. T. ;
Goddard, William A., III .
JOURNAL OF PHYSICAL CHEMISTRY A, 2008, 112 (05) :1040-1053
[9]   Cross-links in Carbon Nanotube Assembly Introduced by Using Polyacrylonitrile as Precursor [J].
Cui, Yanbin ;
Zhang, Mei .
ACS APPLIED MATERIALS & INTERFACES, 2013, 5 (16) :8173-8178
[10]   Modeling initial stage of phenolic pyrolysis: Graphitic precursor formation and interfacial effects [J].
Desai, Tapan G. ;
Lawson, John W. ;
Keblinski, Pawel .
POLYMER, 2011, 52 (02) :577-585