Structure of 2-haloacid dehalogenase from Pseudomonas syringae pv. tomato DC3000

被引:5
|
作者
Hou, Zhiqiang [1 ,2 ]
Zhang, Hongmei [1 ]
Li, Mei [1 ]
Chang, Wenrui [1 ]
机构
[1] Chinese Acad Sci, Inst Biophys, Natl Lab Biomacromol, Beijing 100101, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
基金
中国国家自然科学基金;
关键词
XANTHOBACTER-AUTOTROPHICUS GJ10; L-2-HALOACID DEHALOGENASE; HALOACID DEHALOGENASE; CRYSTAL-STRUCTURES; YL;
D O I
10.1107/S0907444913006021
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
2-Haloacid dehalogenases (2-HADs) catalyse the hydrolytic dehalogenation of 2-haloalkanoic acids, cleaving the carbon-halide bond at the C-alpha-atom position and releasing a halogen atom. These enzymes are of interest for their potential use in bioremediation and in the synthesis of industrial chemicals. Here, the crystal structure of 2-HAD from Pseudomonas syringae pv. tomato DC3000 (ps-2-HAD) at 1.98 angstrom resolution solved using the single-wavelength anomalous dispersion method is reported. The ps-2-HAD molecule consists of two structurally distinct domains: the core domain and the subdomain. Enzymatic activity analysis of ps-2-HAD revealed its capacity to catalyse the dehalogenation of both L- and D-substrates; however, the structure of ps-2-HAD is completely different from that of DehI, which is the only DL-2-HAD enzyme that has been structurally characterized, but shows similar overall folding to L-HADs. Single mutations of four amino-acid residues at the putative active site showed that they are related to its enzymatic activity, yet three of them are nonconserved among HADs. These observations imply that ps-2-HAD has a novel active site and a unique catalytic behaviour compared with other HADs. This study provides a structural basis and biochemical evidence for further elucidation of the catalytic mechanism of 2-HAD.
引用
收藏
页码:1108 / 1114
页数:7
相关论文
共 50 条
  • [21] Proteomic Analysis of Lysine Acetylation and Succinylation to Investigate the Pathogenicity of Virulent Pseudomonas syringae pv. tomato DC3000 and Avirulent Line Pseudomonas syringae pv. tomato DC3000 avrRpm1 on Arabidopsis thaliana
    Ding, Yongqiang
    Liu, Yangxuan
    Yang, Kexin
    Zhao, Yiran
    Wen, Chun
    Yang, Yi
    Zhang, Wei
    GENES, 2024, 15 (04)
  • [22] Localization of hrpA-induced Pseudomonas syringae pv. tomato DC3000 in infected tomato leaves
    Boureau, T
    Routtu, J
    Roine, E
    Taira, S
    Romantschuk, M
    MOLECULAR PLANT PATHOLOGY, 2002, 3 (06) : 451 - 460
  • [23] Resistance Inducers Modulate Pseudomonas syringae pv. Tomato Strain DC3000 Response in Tomato Plants
    Scalschi, Loredana
    Camanes, Gemma
    Llorens, Eugenio
    Fernandez-Crespo, Emma
    Lopez, Maria M.
    Garcia-Agustin, Pilar
    Vicedo, Begonya
    PLOS ONE, 2014, 9 (09):
  • [24] Environmental alkalization suppresses deployment of virulence strategies in Pseudomonas syringae pv. tomato DC3000
    Yang, Zichu
    Wang, Haibi
    Keebler, Robert
    Lovelace, Amelia
    Chen, Hsiao-Chun
    Kvitko, Brian
    Swingle, Bryan
    JOURNAL OF BACTERIOLOGY, 2024, 206 (11)
  • [25] Regulons of Three Pseudomonas syringae pv. tomato DC3000 Iron Starvation Sigma Factors
    Markel, Eric
    Butcher, Bronwyn G.
    Myers, Christopher R.
    Stodghill, Paul
    Cartinhour, Sam
    Swingle, Bryan
    APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2013, 79 (02) : 725 - 727
  • [26] AefR transcription factor negatively regulates the virulence of Pseudomonas syringae pv. tomato DC3000
    Ishiga, T.
    Ishiga, Y.
    Kiyokawa, T.
    Maruyama, N.
    Betsuyaku, S.
    Ichinose, Y.
    Nomura, N.
    PHYTOPATHOLOGY, 2017, 107 (12) : 83 - 83
  • [27] Type III protein secretion and pathogenesis of Pseudomonas syringae pv. tomato DC3000 in Arabidopsis
    He, SY
    Wei, WS
    Yuan, J
    Hu, WQ
    Zwiesler-Vollick, J
    Thilmony, R
    Lee, P
    Plovanich-Jones, A
    BIOLOGY OF PLANT-MICROBE INTERACTIONS, VOL 2, 2000, : 82 - 87
  • [28] Characterizing the role of TvrR during pathogenesis of Pseudomonas syringae pv. tomato strain DC3000
    Lee, C. Y.
    Kunkel, B. N.
    MOLECULAR PLANT-MICROBE INTERACTIONS, 2021, 34 (12) : 16 - 17
  • [29] Regulation of coronatine in P-syringae pv. tomato DC3000
    Sreedharan, A.
    Bender, C. L.
    PHYTOPATHOLOGY, 2004, 94 (06) : S97 - S97
  • [30] Identification of tomato leaf factors that activate toxin gene expression in Pseudomonas syringae pv. tomato DC3000
    Li, XZ
    Starratt, AN
    Cuppels, DA
    PHYTOPATHOLOGY, 1998, 88 (10) : 1094 - 1100