Noether's theorem for non-smooth extremals of variational problems with time delay

被引:21
作者
Frederico, Gastao S. F. [1 ,2 ]
Odzijewicz, Tatiana [1 ]
Torres, Delfim F. M. [1 ]
机构
[1] Univ Aveiro, Dept Math, CIDMA Ctr Res & Dev Math & Applicat, P-3810193 Aveiro, Portugal
[2] Univ Cape Verde, Dept Sci & Technol, Praia, Santiago, Cape Verde
关键词
time delays; invariance; symmetries; constants of motion; conservation laws; DuBois-Reymond necessary optimality condition; Noether's theorem; 49K05; 49S05; CALCULUS;
D O I
10.1080/00036811.2012.762090
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We obtain a non-smooth extension of Noether's symmetry theorem for variational problems with delayed arguments. The result is proved to be valid in the class of Lipschitz functions, as long as the delayed Euler-Lagrange extremals are restricted to those that satisfy the DuBois-Reymond necessary optimality condition. The important case of delayed variational problems with higher order derivatives is considered as well.
引用
收藏
页码:153 / 170
页数:18
相关论文
共 20 条
[1]  
[Anonymous], 1996, UNDERGRADUATE TEXTS
[2]   Noether's theorem on time scales [J].
Bartosiewicz, Zbigniew ;
Torres, Delfim F. M. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 342 (02) :1220-1226
[3]  
Basin Michael, 2008, LECT NOTES CONTR INF, V380
[4]  
Bokov GV., 2011, J. Math. Sci, V172, P623, DOI [10.1007/s10958-011-0208-y, DOI 10.1007/S10958-011-0208-Y]
[5]  
Frederico G. S. F., 2009, THESIS
[6]   A formulation of Noether's theorem for fractional problems of the calculus of variations [J].
Frederico, Gastao S. F. ;
Torres, Delfim F. M. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 334 (02) :834-846
[7]   NOETHER'S SYMMETRY THEOREM FOR VARIATIONAL AND OPTIMAL CONTROL PROBLEMS WITH TIME DELAY [J].
Frederico, Gastao S. F. ;
Torres, Delfim F. M. .
NUMERICAL ALGEBRA CONTROL AND OPTIMIZATION, 2012, 2 (03) :619-630
[8]   Fractional Noether's theorem in the Riesz-Caputo sense [J].
Frederico, Gastao S. F. ;
Torres, Delfim F. M. .
APPLIED MATHEMATICS AND COMPUTATION, 2010, 217 (03) :1023-1033
[9]   Optimal control problems with delays in state and control variables subject to mixed control-state constraints [J].
Goellmann, L. ;
Kern, D. ;
Maurer, H. .
OPTIMAL CONTROL APPLICATIONS & METHODS, 2009, 30 (04) :341-365
[10]  
Gouveia PDF, 2006, CONTROL CYBERN, V35, P831