A Newton linearized compact finite difference scheme for one class of Sobolev equations

被引:15
作者
Chen, Xiaoli [1 ,2 ]
Duan, Jinqiao [3 ]
Li, Dongfang [1 ,4 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Math & Stat, Wuhan 430074, Hubei, Peoples R China
[2] Huazhong Univ Sci & Technol, Ctr Math Sci, Wuhan 430074, Hubei, Peoples R China
[3] IIT, Dept Appl Math, Chicago, IL 60616 USA
[4] Huazhong Univ Sci & Technol, Hubei Key Lab Engn Modeling & Sci Comp, Wuhan 430074, Hubei, Peoples R China
基金
中国博士后科学基金;
关键词
Newton linearized method; finite difference method; stability; convergence; Sobolev equations; NICOLSON GALERKIN FEMS; OPTIMAL ERROR ANALYSIS; ELEMENT METHODS; SYSTEM;
D O I
10.1002/num.22247
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, a Newton linearized compact finite difference scheme is proposed to numerically solve a class of Sobolev equations. The unique solvability, convergence, and stability of the proposed scheme are proved. It is shown that the proposed method is of order 2 in temporal direction and order 4 in spatial direction. Moreover, compare to the classical extrapolated Crank-Nicolson method or the second-order multistep implicit-explicit methods, the proposed scheme is easier to be implemented as it only requires one starting value. Finally, numerical experiments on one and two-dimensional problems are presented to illustrate our theoretical results.
引用
收藏
页码:1093 / 1112
页数:20
相关论文
共 26 条
[1]   Implicit-explicit multistep finite element methods for nonlinear parabolic problems [J].
Akrivis, G ;
Crouzeix, M ;
Makridakis, C .
MATHEMATICS OF COMPUTATION, 1998, 67 (222) :457-477
[2]  
Alshin A. B., 2011, Blow-up in Nonlinear Sobolev Type Equations
[3]  
[Anonymous], 1942, SERIAL
[4]  
[Anonymous], 1995, J KOREAN MATH SOC
[5]   IMPLICIT EXPLICIT METHODS FOR TIME-DEPENDENT PARTIAL-DIFFERENTIAL EQUATIONS [J].
ASCHER, UM ;
RUUTH, SJ ;
WETTON, BTR .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1995, 32 (03) :797-823
[6]  
Barenblatt G.E., 1960, J APPL MATH USSR, V24, P12861303, DOI [10.1016/0021-8928(60)90107-6, DOI 10.1016/0021-8928(60)90107-6]
[7]   Analysis and application of a compact multistep ADI solver for a class of nonlinear viscous wave equations [J].
Deng, Dingwen ;
Zhang, Chengjian .
APPLIED MATHEMATICAL MODELLING, 2015, 39 (3-4) :1033-1049
[8]  
Ewing RE, 1977, Ann Mat Pur Appl, V114, P331
[9]   Weak Galerkin finite element methods for Sobolev equation [J].
Gao, Fuzheng ;
Cui, Jintao ;
Zhao, Guoqun .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2017, 317 :188-202
[10]  
Korpusov M. O., 2005, DOKL AKAD NAUK, V401, P12