A logic nanotechnology featuring strained-silicon

被引:404
作者
Thompson, SE [1 ]
Armstrong, M [1 ]
Auth, C [1 ]
Cea, S [1 ]
Chau, R [1 ]
Glass, G [1 ]
Hoffman, T [1 ]
Klaus, J [1 ]
Ma, ZY [1 ]
Mcintyre, B [1 ]
Murthy, A [1 ]
Obradovic, B [1 ]
Shifren, L [1 ]
Sivakumar, S [1 ]
Tyagi, S [1 ]
Ghani, T [1 ]
Mistry, K [1 ]
Bohr, M [1 ]
El-Mansy, Y [1 ]
机构
[1] Intel Corp, Logic Technol Dev, Hillsboro, OR 97006 USA
关键词
CMOS; metal-oxide-semiconductor field-effect transistors (MOSFET); strained-silicon (Si);
D O I
10.1109/LED.2004.825195
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Strained-silicon (Si) is incorporated into a leading edge 90-nm logic technology [1]. Strained-Si increases saturated n-type and p-type metal-oxide-semiconductor field-effect transistors (MOSFETs) drive currents by 10 and 25%, respectively. The process flow consists of selective epitaxial Si1-xGex in the source/drain regions to create longitudinal uniaxial compressive strain in the p-type MOSEFT. A tensile Si nitride-capping layer is used to introduce tensile uniaxial strain into the n-type MOSFET and enhance electron mobility. Unlike past strained-Si work, 1) the amount of strain for the n-type and p-type MOSFET can be controlled independently on the same wafer and 2) the hole mobility enhancement in this letter is present at large vertical electric fields, thus, making this flow useful for nanoscale transistors in advanced logic technologies.
引用
收藏
页码:191 / 193
页数:3
相关论文
共 15 条
[1]  
BELFORD RE, 2002, P IEEE 60 DEV RES C, P41
[2]  
Bir GE Pikus G.L., 1974, Symmetry and Strain-Induced Effects in Semiconductors
[4]   Six-band k•p calculation of the hole mobility in silicon inversion layers:: Dependence on surface orientation, strain, and silicon thickness [J].
Fischetti, MV ;
Ren, Z ;
Solomon, PM ;
Yang, M ;
Rim, K .
JOURNAL OF APPLIED PHYSICS, 2003, 94 (02) :1079-1095
[5]  
Hoyt JL, 2002, INTERNATIONAL ELECTRON DEVICES 2002 MEETING, TECHNICAL DIGEST, P23, DOI 10.1109/IEDM.2002.1175770
[6]   Mechanical stress effect of etch-stop nitride and its impact on deep submicron transistor design [J].
Ito, S ;
Namba, H ;
Yamaguchi, K ;
Hirata, T ;
Ando, K ;
Koyama, S ;
Kuroki, S ;
Ikezawa, N ;
Suzuki, T ;
Saitoh, T ;
Horiuchi, T .
INTERNATIONAL ELECTRON DEVICES MEETING 2000, TECHNICAL DIGEST, 2000, :247-250
[7]   Hole mobility enhancements in nanometer-scale strained-silicon heterostructures grown on Ge-rich relaxed Si1-xGex [J].
Lee, ML ;
Fitzgerald, EA .
JOURNAL OF APPLIED PHYSICS, 2003, 94 (04) :2590-2596
[8]   Subband structure and mobility of two-dimensional holes in strained Si/SiGe MOSFET's [J].
Oberhuber, R ;
Zandler, G ;
Vogl, P .
PHYSICAL REVIEW B, 1998, 58 (15) :9941-9948
[9]  
OZTURK MC, 2001, P INT WORKSH JUNCT T, V77
[10]   Characteristics and device design of sub-100 nm strained Si N- and PMOSFETs [J].
Rim, K ;
Chu, J ;
Chen, H ;
Jenkins, KA ;
Kanarsky, T ;
Lee, K ;
Mocuta, A ;
Zhu, H ;
Roy, R ;
Newbury, J ;
Ott, J ;
Petrarca, K ;
Mooney, P ;
Lacey, D ;
Koester, S ;
Chan, K ;
Boyd, D ;
Leong, M ;
Wong, HS .
2002 SYMPOSIUM ON VLSI TECHNOLOGY, DIGEST OF TECHNICAL PAPERS, 2002, :98-99