Magnetic induction heating as a new tool for the synthesis of Fe3O4-TiO2 nanoparticle systems

被引:20
作者
Gomez-Polo, C. [1 ,2 ]
Larumbe, S. [1 ,2 ]
Fernandez Barquin, L. [3 ]
Rodriguez Fernandez, L. [4 ]
机构
[1] Univ Publ Navarra, Dept Fis, Edificio Acebos,Campus Arrosadia, Pamplona 31006, Spain
[2] Univ Publ Navarra, Inst Adv Mat INAMAT, Campus Arrosadia, Pamplona 31006, Spain
[3] Univ Cantabria, CITIMAC, E-39005 Santander, Spain
[4] Univ Cantabria, SERMET, E-39005 Santander, Spain
关键词
Magnetic nanoparticles; TiO2; Sol-gel; Magnetic induction heating; Hybrid nanostructures; ROOM-TEMPERATURE FERROMAGNETISM; LATTICE-PARAMETERS; SHELL; ANATASE;
D O I
10.1007/s11051-016-3426-x
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A novel method for the synthesis of Fe3O4-TiO2 nanoparticles is described, where the magnetic induction heating of Fe3O4 nanoparticles is employed to calcine a metal oxide precursor gel. Magnetite Fe3O4 nanoparticles were mechanically dispersed in the as-prepared TiO2 gel and subsequently submitted to the action of an ac magnetic field (frequency 313 kHz, amplitude 340 Oe, induction times, t = 10, 20, and 30 min). The magnetic heating of the magnetic nanoparticles is able to calcine the precursor gel and thus to produce the TiO2 crystallization in the anatase phase, as supported by TGA analysis. The calcined structure, magnetically filtered to select the Fe3O4-TiO2 nanostructure, was analyzed by X-ray diffraction and transmission electron microscopy. The results show that the Fe3O4-TiO2 nanostructure basically consists of an ensemble of Fe3O4 cores surrounded by tiny TiO2 aggregates (crystallite size <5 nm) forming an effective shell. The synthesis route and the TiO2 environment do not introduce significant changes in the magnetic response of the magnetite nanoparticles. Thus, magnetic induction heating of magnetic nanoparticles appears as a new tool to reach a versatile calcination process to obtain Fe3O4-TiO2 nanostructures.
引用
收藏
页数:9
相关论文
共 36 条
[1]   Uniform and water stable magnetite nanoparticles with diameters around the monodomain-multidomain limit [J].
Andres Verges, M. ;
Costo, R. ;
Roca, A. G. ;
Marco, J. F. ;
Goya, G. F. ;
Serna, C. J. ;
Morales, M. P. .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2008, 41 (13)
[2]  
Cao G., 2011, NANOSTRUCTURED NANOM
[3]   Sol-gel nanocoating: An approach to the preparation of structured materials [J].
Caruso, RA ;
Antonietti, M .
CHEMISTRY OF MATERIALS, 2001, 13 (10) :3272-3282
[4]   Lattice parameters and site occupancy factors of magnetite-maghemite core-shell nanoparticles. A critical study [J].
Cervellino, Antonio ;
Frison, Ruggero ;
Cernuto, Giuseppe ;
Guagliardi, Antonietta ;
Masciocchi, Norberto .
JOURNAL OF APPLIED CRYSTALLOGRAPHY, 2014, 47 :1755-1761
[5]   Core/Shell Nanoparticles: Classes, Properties, Synthesis Mechanisms, Characterization, and Applications [J].
Chaudhuri, Rajib Ghosh ;
Paria, Santanu .
CHEMICAL REVIEWS, 2012, 112 (04) :2373-2433
[6]   The Sol-Gel Route to Advanced Silica-Based Materials and Recent Applications [J].
Ciriminna, Rosaria ;
Fidalgo, Alexandra ;
Pandarus, Valerica ;
Beland, Francois ;
Ilharco, Laura M. ;
Pagliaro, Mario .
CHEMICAL REVIEWS, 2013, 113 (08) :6592-6620
[7]   Repairing Polymers Using an Oscillating Magnetic Field [J].
Corten, Cathrin C. ;
Urban, Marek W. .
ADVANCED MATERIALS, 2009, 21 (48) :5011-+
[8]   Surface spin disorder effects in magnetite and poly(thiophene)-coated magnetite nanoparticles [J].
Cotica, Luiz F. ;
Santos, Ivair A. ;
Girotto, Emerson M. ;
Ferri, Elidia V. ;
Coelho, Adelino A. .
JOURNAL OF APPLIED PHYSICS, 2010, 108 (06)
[9]   Physics of heat generation using magnetic nanoparticles for hyperthermia [J].
Dennis, Cindi L. ;
Ivkov, Robert .
INTERNATIONAL JOURNAL OF HYPERTHERMIA, 2013, 29 (08) :715-729
[10]   Onion-like nanoparticles with γ-Fe core surrounded by a α-Fe/Fe-oxide double shell [J].
Fernandez-Garcia, M. P. ;
Gorria, P. ;
Sevilla, M. ;
Fuertes, A. B. ;
Greneche, J. M. ;
Blanco, J. A. .
JOURNAL OF ALLOYS AND COMPOUNDS, 2011, 509 :S320-S322