Local prediction of turning points of oscillating time series

被引:2
|
作者
Kugiumtzis, D. [1 ]
机构
[1] Aristotle Univ Thessaloniki, Dept Math Phys & Computat Sci, Fac Engn, Thessaloniki 54124, Greece
来源
PHYSICAL REVIEW E | 2008年 / 78卷 / 03期
关键词
D O I
10.1103/PhysRevE.78.036206
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
For oscillating time series, the prediction is often focused on the turning points. In order to predict the turning point magnitudes and times it is proposed to form the state space reconstruction only from the turning points and modify the local (nearest-neighbor) model accordingly. The model on turning points gives optimal predictions at a lower dimensional state space than the optimal local model applied directly on the oscillating time series and is thus computationally more efficient. Simulations on different oscillating nonlinear systems showed that it gives better predictions of turning points and this is confirmed also for the time series of annual sunspots and total stress in a plastic deformation experiment.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] A fast and robust method for detecting trend turning points in InSAR displacement time series
    Ghaderpour, Ebrahim
    Antonielli, Benedetta
    Bozzano, Francesca
    Mugnozza, Gabriele Scarascia
    Mazzanti, Paolo
    COMPUTERS & GEOSCIENCES, 2024, 185
  • [22] Heterogeneous local model networks for time series prediction
    Oh, SK
    Kim, MS
    Eom, TD
    Lee, JJ
    APPLIED MATHEMATICS AND COMPUTATION, 2005, 168 (01) : 164 - 177
  • [23] Efficiency of local models ensembles for time series prediction
    Martinez-Rego, David
    Fontenla-Romero, Oscar
    Alonso-Betanzos, Amparo
    EXPERT SYSTEMS WITH APPLICATIONS, 2011, 38 (06) : 6884 - 6894
  • [24] Local averaging optimization for chaotic time series prediction
    McNames, J
    NEUROCOMPUTING, 2002, 48 : 279 - 297
  • [25] Time series prediction by mixture of linear local models
    Oh, SK
    Seo, KH
    Lee, JJ
    IECON'03: THE 29TH ANNUAL CONFERENCE OF THE IEEE INDUSTRIAL ELECTRONICS SOCIETY, VOLS 1 - 3, PROCEEDINGS, 2003, : 1905 - 1908
  • [26] Local dynamic integration of ensemble in prediction of time series
    Osowski, S.
    Siwek, K.
    BULLETIN OF THE POLISH ACADEMY OF SCIENCES-TECHNICAL SCIENCES, 2019, 67 (03) : 517 - 525
  • [27] Incremental local model networks for time series prediction
    Monzón, L
    Ferreira, A
    Pedreira, I
    IJCNN'01: INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOLS 1-4, PROCEEDINGS, 2001, : 1652 - 1656
  • [28] The improved local linear prediction of chaotic time series
    Meng, Qing-Fang
    Peng, Yu-Hua
    Sun, Jia
    CHINESE PHYSICS, 2007, 16 (11): : 3220 - 3225
  • [29] Regularized local linear prediction of chaotic time series
    Kugiumtzis, D
    Lingjaerde, OC
    Christophersen, N
    PHYSICA D-NONLINEAR PHENOMENA, 1998, 112 (3-4) : 344 - 360
  • [30] Prediction of business cycle turning points in Germany
    Fritsche, U
    Kuzin, V
    JAHRBUCHER FUR NATIONALOKONOMIE UND STATISTIK, 2005, 225 (01): : 22 - 43