DERIVATIONS OF FINITARY INCIDENCE RINGS

被引:17
作者
Khripchenko, N. S. [1 ]
机构
[1] Dept Mech & Math, UA-61077 Kharkov, Ukraine
关键词
Derivation; Finitary incidence ring; Pocategory; Quasiordered set; Weak incidence ring;
D O I
10.1080/00927872.2011.580441
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let l be a pocategory, (see Khripchenko [3]), and FI(l) its finitary incidence ring [3]. We prove that the ring ODer FI of outer derivations of FI(l) is isomorphic to the ring ODer l of outer derivations of l. Furthermore, if l = l(P, R), where P is a quasiordered set and R is a ring, then it is proved that ODer FI congruent to H-1 ((P) over bar, C(R)) x Pi(i is an element of I) ODerR. As a consequence, the description of the algebra K- ODer FI of outer K- derivations of FI(P,A), where A is a K- algebra, is obtained. The ring of outer derivations and the algebra of outer K- derivations of the weak incidence ring I*(l) [3] are also described.
引用
收藏
页码:2503 / 2522
页数:20
相关论文
共 5 条
[1]  
Baclawski K, 1972, P AM MATH SOC, V38, P351
[2]   Finitary Incidence Algebras [J].
Khripchenko, N. S. ;
Novikov, B. V. .
COMMUNICATIONS IN ALGEBRA, 2009, 37 (05) :1670-1676
[3]  
Khripchenko NS, 2010, MAT STUD, V34, P30
[4]  
Singh S., 2004, INT J MATH MATH SCI, V53, P2835
[5]  
Spiegel E., 1997, INCIDENCE ALGEBRAS