Feature selection based-on genetic algorithm for CBIR

被引:13
|
作者
Zhao, Tianzhong [1 ]
Lu, Jianjiang [1 ]
Zhang, Yafei [1 ]
Xiao, Qi [1 ]
机构
[1] PLA Univ Sci & Technol, Inst Command Automat, Nanjing 210007, Peoples R China
来源
CISP 2008: FIRST INTERNATIONAL CONGRESS ON IMAGE AND SIGNAL PROCESSING, VOL 2, PROCEEDINGS | 2008年
关键词
feature selection; image retrieval; genetic algorithm; k-nearest neighbor classifier; multimedia content description interface;
D O I
10.1109/CISP.2008.90
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Automated techniques to optimize feature descriptor weights and select optimum feature descriptor subset are desirable as a way to enhance the performance of content based image retrieval system. In our system, all the MPEG-7 image feature descriptors including color descriptors, texture descriptors and shape descriptors are used to represent low-level image features. We use a real coded chromosome genetic algorithm (GA) and k-nearest neighbor (k-NN) classification accuracy as fitness function to optimize weights. Meanwhile, a binary one and k-NN classification accuracy combining with the size of feature descriptor subset as fitness function are used to select optimum feature descriptor subset. Furthermore, we propose two kinds of two-stage feature selection schemes for weight optimization and descriptor subset selection, which are the integration of a real coded GA and a binary one. The experimental results over 2000 classified Corel images show that with weight optimization, the accuracy of image retrieval system is improved; with the selection of optimum feature descriptor subset, both the accuracy and the efficiency are improved.
引用
收藏
页码:495 / 499
页数:5
相关论文
共 50 条
  • [1] Feature selection based-on genetic algorithm for image annotation
    Lu, Jianjiang
    Zhao, Tianzhong
    Zhang, Yafei
    KNOWLEDGE-BASED SYSTEMS, 2008, 21 (08) : 887 - 891
  • [2] Feature selection algorithm based on quantum genetic algorithm
    Zhang, Ge-Xiang
    Jin, Wei-Dong
    Hu, Lai-Zhao
    Kongzhi Lilun Yu Yingyong/Control Theory and Applications, 2005, 22 (05): : 810 - 813
  • [3] Image feature selection based on genetic algorithm
    Lei, Liang
    Peng, Jun
    Yang, Bo
    Lecture Notes in Electrical Engineering, 2013, 219 LNEE (VOL. 4): : 825 - 831
  • [4] Deluge based Genetic Algorithm for feature selection
    Guha, Ritam
    Ghosh, Manosij
    Kapri, Souvik
    Shaw, Sushant
    Mutsuddi, Shyok
    Bhateja, Vikrant
    Sarkar, Ram
    EVOLUTIONARY INTELLIGENCE, 2021, 14 (02) : 357 - 367
  • [5] Feature subset selection based on the genetic algorithm
    Yang, Jingwei
    Wang, Sile
    Chen, Yingyi
    Lu, Sukui
    Yang, Wenzhu
    ADVANCED TECHNOLOGIES IN MANUFACTURING, ENGINEERING AND MATERIALS, PTS 1-3, 2013, 774-776 : 1532 - +
  • [6] Deluge based Genetic Algorithm for feature selection
    Ritam Guha
    Manosij Ghosh
    Souvik Kapri
    Sushant Shaw
    Shyok Mutsuddi
    Vikrant Bhateja
    Ram Sarkar
    Evolutionary Intelligence, 2021, 14 : 357 - 367
  • [7] A Clustering Based Genetic Algorithm for Feature Selection
    Rostami, Mehrdad
    Moradi, Parham
    2014 6TH CONFERENCE ON INFORMATION AND KNOWLEDGE TECHNOLOGY (IKT), 2014, : 112 - 116
  • [8] A Feature Selection Method Based on Feature Grouping and Genetic Algorithm
    Lin, Xiaohui
    Wang, Xiaomei
    Xiao, Niyi
    Huang, Xin
    Wang, Jue
    INTELLIGENCE SCIENCE AND BIG DATA ENGINEERING: BIG DATA AND MACHINE LEARNING TECHNIQUES, ISCIDE 2015, PT II, 2015, 9243 : 150 - 158
  • [9] A Hybrid Approach for Feature Selection Based on Correlation Feature Selection and Genetic Algorithm
    Rani, Pooja
    Kumar, Rajneesh
    Jain, Anurag
    INTERNATIONAL JOURNAL OF SOFTWARE INNOVATION, 2022, 10 (01)
  • [10] GENETIC ALGORITHM BASED FEATURE SELECTION FOR PARAPHRASE RECOGNITION
    Chitra, A.
    Rajkumar, Anupriya
    INTERNATIONAL JOURNAL ON ARTIFICIAL INTELLIGENCE TOOLS, 2013, 22 (02)