Variation of Log Canonical Thresholds in Linear Systems

被引:18
作者
Ambro, Florin [1 ]
机构
[1] Romanian Acad, Inst Math Simion Stoilow, POB 1-764, RO-014700 Bucharest, Romania
关键词
INTERIOR; SINGULARITY; SIMPLICES; POLYTOPES;
D O I
10.1093/imrn/rnv284
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate the variation of log canonical thresholds in (graded) linear systems. For toric log Fano varieties, we give a sharp lower bound for log canonical thresholds of the anticanonical members in terms of the global minimal log discrepancy.
引用
收藏
页码:4418 / 4448
页数:31
相关论文
共 20 条
[1]  
Alexeev V, 2008, PURE APPL MATH Q, V4, P767
[2]  
Ambro F., 2006, ARXIVMATH0611859
[3]  
Ambro F, 2010, EMS SER CONGR REP, P39
[4]  
Ambro F, 2009, CONTEMP MATH, V502, P1
[5]  
[Anonymous], 1994, Internat. J. Math., DOI 10.1142/S0129167X94000395
[6]  
[Anonymous], 1995, Quasi-projective Moduli for Polarized Manifolds
[7]   Largest integral simplices with one interior integral point: Solution of Hensley's conjecture and related results [J].
Averkov, Gennadiy ;
Kruempelmann, Jan ;
Nill, Benjamin .
ADVANCES IN MATHEMATICS, 2015, 274 :118-166
[8]   ON THE SIZE OF LATTICE SIMPLICES WITH A SINGLE INTERIOR LATTICE POINT [J].
Averkov, Gennadiy .
SIAM JOURNAL ON DISCRETE MATHEMATICS, 2012, 26 (02) :515-526
[9]  
BORISOV A., 2000, ARXIVMATH0001109
[10]   SINGULAR TORIC FANO VARIETIES [J].
BORISOV, AA ;
BORISOV, LA .
RUSSIAN ACADEMY OF SCIENCES SBORNIK MATHEMATICS, 1993, 75 (01) :277-283