The dependence of ice microphysics on aerosol concentration in arctic mixed-phase stratus clouds during ISDAC and M-PACE

被引:91
作者
Jackson, Robert C. [1 ]
McFarquhar, Greg M. [1 ]
Korolev, Alexei V. [2 ]
Earle, Michael E. [2 ]
Liu, Peter S. K. [2 ]
Lawson, R. Paul [3 ]
Brooks, Sarah [4 ]
Wolde, Mengistu [5 ]
Laskin, Alexander [6 ]
Freer, Matt [1 ]
机构
[1] Univ Illinois, Dept Atmospher Sci, Urbana, IL 61820 USA
[2] Environm Canada, Cloud Phys & Severe Weather Res Sect, Toronto, ON, Canada
[3] Stratton Pk Engn Co, Boulder, CO USA
[4] Texas A&M Univ, Coll Geosci, College Stn, TX 77843 USA
[5] CNR, Ottawa, ON, Canada
[6] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA
关键词
SINGLE-SCATTERING PROPERTIES; WATER-CONTENT; LIGHT-SCATTERING; PART I; AIRBORNE; POLLUTION; PARTICLES; PROBE; STRATOCUMULUS; RETRIEVALS;
D O I
10.1029/2012JD017668
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
Cloud and aerosol data acquired by the National Research Council of Canada (NRC) Convair-580 aircraft in, above, and below single-layer arctic stratocumulus cloud during the Indirect and Semi-Direct Aerosol Campaign (ISDAC) in April 2008 were used to test three aerosol indirect effects hypothesized to act in mixed-phase clouds: the riming indirect effect, the glaciation indirect effect, and the thermodynamic indirect effect. The data showed a correlation of R = 0.78 between liquid drop number concentration, N-liq inside cloud and ambient aerosol number concentration N-PCASP below cloud. This, combined with increasing liquid water content LWC with height above cloud base and the nearly constant vertical profile of N-liq, suggested that liquid drops nucleated from aerosol at cloud base. No evidence of a riming indirect effect was observed, but a strong correlation of R = 0.69 between ice crystal number concentration N-i and N-PCASP above cloud was noted. Increases in ice nuclei (IN) concentration with N-PCASP above cloud for 2 flight dates combined with the subadiabatic LWC profiles suggest possible mixing of IN from cloud top consistent with the glaciation indirect effect. The lower N-ice and lower effective radius r(el) for the more polluted ISDAC cases compared to data collected in cleaner single-layer stratocumulus conditions during the Mixed-Phase Arctic Cloud Experiment is consistent with the operation of the thermodynamic indirect effect. However, more data in a wider variety of meteorological and surface conditions, with greater variations in aerosol forcing, are required to identify the dominant aerosol forcing mechanisms in mixed-phase arctic clouds.
引用
收藏
页数:20
相关论文
共 100 条
[1]   AEROSOLS, CLOUD MICROPHYSICS, AND FRACTIONAL CLOUDINESS [J].
ALBRECHT, BA .
SCIENCE, 1989, 245 (4923) :1227-1230
[2]   Improvement in determination of ice water content from two-dimensional particle imagery. Part I: Image-to-mass relationships [J].
Baker, Brad ;
Lawson, R. Paul .
JOURNAL OF APPLIED METEOROLOGY AND CLIMATOLOGY, 2006, 45 (09) :1282-1290
[3]   ARCTIC AIR-POLLUTION - AN OVERVIEW OF CURRENT KNOWLEDGE [J].
BARRIE, LA .
ATMOSPHERIC ENVIRONMENT, 1986, 20 (04) :643-663
[4]  
Baumgardner D, 1997, J ATMOS OCEAN TECH, V14, P1224, DOI 10.1175/1520-0426(1997)014<1224:ACFOAP>2.0.CO
[5]  
2
[6]   Mountaintop and radar measurements of anthropogenic aerosol effects on snow growth and snowfall rate [J].
Borys, RD ;
Lowenthal, DH ;
Cohn, SA ;
Brown, WOJ .
GEOPHYSICAL RESEARCH LETTERS, 2003, 30 (10)
[7]   Characteristics, sources, and transport of aerosols measured in spring 2008 during the aerosol, radiation, and cloud processes affecting Arctic Climate (ARCPAC) Project [J].
Brock, C. A. ;
Cozic, J. ;
Bahreini, R. ;
Froyd, K. D. ;
Middlebrook, A. M. ;
McComiskey, A. ;
Brioude, J. ;
Cooper, O. R. ;
Stohl, A. ;
Aikin, K. C. ;
de Gouw, J. A. ;
Fahey, D. W. ;
Ferrare, R. A. ;
Gao, R-S. ;
Gore, W. ;
Holloway, J. S. ;
Huebler, G. ;
Jefferson, A. ;
Lack, D. A. ;
Lance, S. ;
Moore, R. H. ;
Murphy, D. M. ;
Nenes, A. ;
Novelli, P. C. ;
Nowak, J. B. ;
Ogren, J. A. ;
Peischl, J. ;
Pierce, R. B. ;
Pilewskie, P. ;
Quinn, P. K. ;
Ryerson, T. B. ;
Schmidt, K. S. ;
Schwarz, J. P. ;
Sodemann, H. ;
Spackman, J. R. ;
Stark, H. ;
Thomson, D. S. ;
Thornberry, T. ;
Veres, P. ;
Watts, L. A. ;
Warneke, C. ;
Wollny, A. G. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2011, 11 (06) :2423-2453
[8]  
BROWN PRA, 1995, J ATMOS OCEAN TECH, V12, P410, DOI 10.1175/1520-0426(1995)012<0410:IMOTIW>2.0.CO
[9]  
2
[10]  
Cober SG, 2001, J APPL METEOROL, V40, P1967, DOI 10.1175/1520-0450(2001)040<1967:ACPC>2.0.CO