Timing, sequencing, and quantum of life course events:: A machine learning approach

被引:27
作者
Billari, Francesco C.
Fuernkranz, Johannes
Prskawetz, Alexia
机构
[1] Univ Bocconi, Inst Quantitat Methods, I-20135 Milan, Italy
[2] IGIER, I-20135 Milan, Italy
[3] Tech Univ Darmstadt, Knowledge Engn Grp, Dept Comp Sci, D-64289 Darmstadt, Germany
[4] Vienna Inst Demog, A-1040 Vienna, Austria
来源
EUROPEAN JOURNAL OF POPULATION-REVUE EUROPEENNE DE DEMOGRAPHIE | 2006年 / 22卷 / 01期
关键词
data mining; event history; life course; machine learning; transition to adulthood;
D O I
10.1007/s10680-005-5549-0
中图分类号
C921 [人口统计学];
学科分类号
摘要
In this paper we discuss and apply machine learning techniques, using ideas from a core research area in the artificial intelligence literature to analyse simultaneously timing, sequencing, and quantum of life course events from a comparative perspective. We outline the need for techniques which allow the adoption of a holistic approach to life course analysis, illustrating the specific case of the transition to adulthood. We briefly introduce machine learning algorithms to build decision trees and rule sets and then apply such algorithms to delineate the key features which distinguish Austrian and Italian pathways to adulthood, using Fertility and Family Survey data. The key role of sequencing and synchronization between events emerges clearly from the analysis.
引用
收藏
页码:37 / 65
页数:29
相关论文
共 50 条
  • [41] Quantum Driven Machine Learning
    Saini, Shivani
    Khosla, P. K.
    Kaur, Manjit
    Singh, Gurmohan
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2020, 59 (12) : 4013 - 4024
  • [42] HASM quantum machine learning
    Yue, Tianxiang
    Wu, Chenchen
    Liu, Yi
    Du, Zhengping
    Zhao, Na
    Jiao, Yimeng
    Xu, Zhe
    Shi, Wenjiao
    SCIENCE CHINA-EARTH SCIENCES, 2023, 66 (09) : 1937 - 1945
  • [43] Survey on Quantum Machine Learning
    Wang, Jian
    Zhang, Rui
    Jiang, Nan
    Ruan Jian Xue Bao/Journal of Software, 2024, 35 (08): : 3843 - 3877
  • [44] HASM quantum machine learning
    Tianxiang Yue
    Chenchen Wu
    Yi Liu
    Zhengping Du
    Na Zhao
    Yimeng Jiao
    Zhe Xu
    Wenjiao Shi
    Science China Earth Sciences, 2023, 66 : 1937 - 1945
  • [45] An introduction to quantum machine learning
    Schuld, Maria
    Sinayskiy, Ilya
    Petruccione, Francesco
    CONTEMPORARY PHYSICS, 2015, 56 (02) : 172 - 185
  • [46] A Future with Quantum Machine Learning
    DeBenedictis, Erik P.
    COMPUTER, 2018, 51 (02) : 68 - 71
  • [47] Quantum Machine Learning Playground
    Debus, Pascal
    Issel, Sebastian
    Tscharke, Kilian
    IEEE COMPUTER GRAPHICS AND APPLICATIONS, 2024, 44 (05) : 40 - 53
  • [48] Quantum Embedding Search for Quantum Machine Learning
    Nguyen, Nam
    Chen, Kwang-Cheng
    IEEE ACCESS, 2022, 10 : 41444 - 41456
  • [49] Machine learning for quantum matter
    Carrasquilla, Juan
    ADVANCES IN PHYSICS-X, 2020, 5 (01):
  • [50] Discriminating Quantum States with Quantum Machine Learning
    Quiroga, David
    Date, Prasanna
    Pooser, Raphael
    2021 INTERNATIONAL CONFERENCE ON REBOOTING COMPUTING (ICRC 2021), 2021, : 56 - 63