Timing, sequencing, and quantum of life course events:: A machine learning approach

被引:27
作者
Billari, Francesco C.
Fuernkranz, Johannes
Prskawetz, Alexia
机构
[1] Univ Bocconi, Inst Quantitat Methods, I-20135 Milan, Italy
[2] IGIER, I-20135 Milan, Italy
[3] Tech Univ Darmstadt, Knowledge Engn Grp, Dept Comp Sci, D-64289 Darmstadt, Germany
[4] Vienna Inst Demog, A-1040 Vienna, Austria
来源
EUROPEAN JOURNAL OF POPULATION-REVUE EUROPEENNE DE DEMOGRAPHIE | 2006年 / 22卷 / 01期
关键词
data mining; event history; life course; machine learning; transition to adulthood;
D O I
10.1007/s10680-005-5549-0
中图分类号
C921 [人口统计学];
学科分类号
摘要
In this paper we discuss and apply machine learning techniques, using ideas from a core research area in the artificial intelligence literature to analyse simultaneously timing, sequencing, and quantum of life course events from a comparative perspective. We outline the need for techniques which allow the adoption of a holistic approach to life course analysis, illustrating the specific case of the transition to adulthood. We briefly introduce machine learning algorithms to build decision trees and rule sets and then apply such algorithms to delineate the key features which distinguish Austrian and Italian pathways to adulthood, using Fertility and Family Survey data. The key role of sequencing and synchronization between events emerges clearly from the analysis.
引用
收藏
页码:37 / 65
页数:29
相关论文
共 50 条
  • [31] Life Course Justice and Learning
    Lulle, Aija
    SOCIAL INCLUSION, 2022, 10 (04) : 76 - 78
  • [32] Early-Life Stressful Events and Suicide Attempt in Schizophrenia: Machine Learning Models
    De Luca, Vincenzo
    Adanty, Christopher
    NEUROPSYCHOPHARMACOLOGY, 2019, 44 (SUPPL 1) : 174 - 174
  • [33] Early-life stressful events and suicide attempt in schizophrenia: Machine learning models
    Tasmim, Samia
    Dada, Oluwagbenga
    Wang, Kevin Z.
    Bani-Fatemi, Ali
    Strauss, John
    Adanty, Christopher
    Graff, Ariel
    Gerretsen, Philip
    Zai, Clement
    Borlido, Carol
    De Luca, Vincenzo
    SCHIZOPHRENIA RESEARCH, 2020, 218 : 329 - 331
  • [34] The Life Course of Unemployment: The Timing and Relative Degree of Risk
    Damaske, Sarah
    Frech, Adrianne
    Wething, Hilary
    WORK AND OCCUPATIONS, 2024, 51 (02) : 139 - 180
  • [35] Finding small somatic structural variants in exome sequencing data: a machine learning approach
    Kuhn, Matthias
    Stange, Thoralf
    Herold, Sylvia
    Thiede, Christian
    Roeder, Ingo
    COMPUTATIONAL STATISTICS, 2018, 33 (03) : 1145 - 1158
  • [36] Finding small somatic structural variants in exome sequencing data: a machine learning approach
    Matthias Kuhn
    Thoralf Stange
    Sylvia Herold
    Christian Thiede
    Ingo Roeder
    Computational Statistics, 2018, 33 : 1145 - 1158
  • [37] Psoriasis - The Life Course Approach
    Linder, M. Dennis
    Piaserico, Stefano
    Augustin, Matthias
    Fortina, Anna Belloni
    Cohen, Arnon D.
    Gieler, Uwe
    Jemec, Gregor B. E.
    Kimball, Alexa B.
    Peserico, Andrea
    Sampogna, Francesca
    Warren, Richard B.
    de Korte, John
    ACTA DERMATO-VENEREOLOGICA, 2016, 96 : 102 - 108
  • [38] Important Correlates of Purpose in Life Identified Through a Machine Learning Approach
    Mei, Zhen
    Lori, Adriana
    Vattathil, Selina M.
    Boyle, Patricia A.
    Bradley, Bekh
    Li, Peng
    Bennett, David A.
    Wingo, Thomas S.
    Wingo, Aliza P.
    AMERICAN JOURNAL OF GERIATRIC PSYCHIATRY, 2021, 29 (05) : 488 - 498
  • [39] Life Insurance Prediction and Its Sustainability Using Machine Learning Approach
    Shamsuddin, Siti Nurasyikin
    Ismail, Noriszura
    Nur-Firyal, R.
    SUSTAINABILITY, 2023, 15 (13)
  • [40] Quantum Driven Machine Learning
    Shivani Saini
    PK Khosla
    Manjit Kaur
    Gurmohan Singh
    International Journal of Theoretical Physics, 2020, 59 : 4013 - 4024