Bayesian Eigenobjects: A Unified Framework for 3D Robot Perception

被引:0
|
作者
Burchfiel, Benjamin [1 ]
Konidaris, George [2 ]
机构
[1] Duke Univ, Durham, NC 27706 USA
[2] Brown Univ, Providence, RI 02912 USA
来源
ROBOTICS: SCIENCE AND SYSTEMS XIII | 2017年
关键词
COVARIANCE-MATRIX ESTIMATION; SHRINKAGE; IMAGES;
D O I
暂无
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
We introduce Bayesian Eigenobjects (BEOs), a novel object representation that is the first technique able to perform joint classification, pose estimation, and 3D geometric completion on previously unencountered and partially observed query objects. BEOs employ Variational Bayesian Principal Component Analysis (VBPCA) directly on 3D object representations to create generative and compact probabilistic models for classes of 3D objects. Using only depth information, we significantly outperform the current state-of-the-art method for joint classification and 3D completion in both accuracy and query time. Additionally, we show that BEOs are well suited for the extremely challenging task of joint classification, completion, and pose estimation on a large dataset of household objects.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Hybrid Bayesian Eigenobjects: Combining Linear Subspace and Deep Network Methods for 3D Robot Vision
    Burchfiel, Benjamin
    Konidaris, George
    2018 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2018, : 6843 - 6850
  • [2] A Unified Framework for 3D Hand Tracking
    Poudel, Rudra P. K.
    Fonseca, Jose A. S.
    Zhang, Jian J.
    Nait-Charif, Hammadi
    ADVANCES IN VISUAL COMPUTING, ISVC 2013, PT I, 2013, 8033 : 129 - 139
  • [3] 3D Perception for Autonomous Robot Exploration
    Xu, Jiejun
    Kim, Kyungnam
    Zhang, Lei
    Khosla, Deepak
    ADVANCES IN VISUAL COMPUTING, PT I (ISVC 2015), 2015, 9474 : 888 - 900
  • [4] Towards a unified theory of 3D shape perception
    Fleming, Roland
    INTERNATIONAL JOURNAL OF PSYCHOLOGY, 2008, 43 (3-4) : 426 - 426
  • [5] A Bayesian framework for 3D surface estimation
    Turner, M
    Hancock, ER
    PATTERN RECOGNITION, 2001, 34 (04) : 903 - 922
  • [6] A Unified 3D Mapping Framework Using a 3D or 2D LiDAR
    Zhen, Weikun
    Scherer, Sebastian
    PROCEEDINGS OF THE 2018 INTERNATIONAL SYMPOSIUM ON EXPERIMENTAL ROBOTICS, 2020, 11 : 702 - 711
  • [7] AN UNIFIED FRAMEWORK FOR 3D FRAGMENTED OBJECT PATCHING
    Li, Jun-Bao
    Li, Meng
    Shi, Peng
    Pan, Jeng-Shyang
    INTERNATIONAL JOURNAL OF INNOVATIVE COMPUTING INFORMATION AND CONTROL, 2010, 6 (12): : 5633 - 5644
  • [8] 3D robot perception with Point Cloud Library
    Munaro, Matteo
    Rusu, Radu B.
    Menegatti, Emanuele
    ROBOTICS AND AUTONOMOUS SYSTEMS, 2016, 78 : 97 - 99
  • [9] PETRv2: A Unified Framework for 3D Perception from Multi-Camera Images
    Liu, Yingfei
    Yan, Junjie
    Jia, Fan
    Li, Shuailin
    Gao, Aqi
    Wang, Tiancai
    Zhang, Xiangyu
    2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION, ICCV, 2023, : 3239 - 3249
  • [10] A Bayesian framework for simultaneous matting and 3D reconstruction
    Guillemaut, J. -Y.
    Hilton, A.
    Starck, J.
    Kilner, J.
    Grau, O.
    3DIM 2007: SIXTH INTERNATIONAL CONFERENCE ON 3-D DIGITAL IMAGING AND MODELING, PROCEEDINGS, 2007, : 167 - +