Can genetic engineering of lignin deposition be accomplished without an unacceptable yield penalty?

被引:150
作者
Bonawitz, Nicholas D. [1 ]
Chapple, Clint [1 ]
机构
[1] Purdue Univ, Dept Biochem, W Lafayette, IN 47907 USA
关键词
TRANSGENIC TOBACCO PLANTS; NAC TRANSCRIPTION FACTORS; MEDICAGO-SATIVA L; DOWN-REGULATION; FERULATE; 5-HYDROXYLASE; BIOFUEL PRODUCTION; AUXIN TRANSPORT; HYBRID POPLAR; SECONDARY METABOLISM; ARABIDOPSIS-THALIANA;
D O I
10.1016/j.copbio.2012.11.004
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
The secondary cell wall polymer lignin impedes the extraction of fermentable sugars from biomass, and has been one of the major impediments in the development of cost-effective biofuel technologies. Unfortunately, attempts to genetically engineer lignin biosynthesis frequently result in dwarfing or developmental abnormalities of unknown cause, thus limiting the benefits of increased fermentable sugar yield. In this brief review, we explore some of the possible mechanisms that could underlie this poorly understood phenomenon, with the expectation that an understanding of the cause of dwarfing in lignin biosynthetic mutants and transgenic plants could lead to new strategies for the development of improved bioenergy feedstocks.
引用
收藏
页码:336 / 343
页数:8
相关论文
共 71 条
[1]   A coumaroyl-ester-3-hydroxylase insertion mutant reveals the existence of nonredundant meta-hydroxylation pathways and essential roles for phenolic precursors in cell expansion and plant growth [J].
Abdulrazzak, N ;
Pollet, B ;
Ehlting, J ;
Larsen, K ;
Asnaghi, C ;
Ronseau, S ;
Proux, C ;
Erhardt, M ;
Seltzer, V ;
Renou, JP ;
Ullmann, P ;
Pauly, M ;
Lapierre, C ;
Werck-Reichhart, D .
PLANT PHYSIOLOGY, 2006, 140 (01) :30-48
[2]   Flavonoid accumulation in Arabidopsis repressed in lignin synthesis affects auxin transport and plant growth [J].
Besseau, Sebastien ;
Hoffmann, Laurent ;
Geoffroy, Pierrette ;
Lapierre, Catherine ;
Pollet, Brigitte ;
Legrand, Michel .
PLANT CELL, 2007, 19 (01) :148-162
[3]   CELL-DIVISION PROMOTING ACTIVITY OF NATURALLY-OCCURRING DEHYDRODICONIFERYL GLUCOSIDES - DO CELL-WALL COMPONENTS CONTROL CELL-DIVISION [J].
BINNS, AN ;
CHEN, RH ;
WOOD, HN ;
LYNN, DG .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1987, 84 (04) :980-984
[4]   Lignin biosynthesis [J].
Boerjan, W ;
Ralph, J ;
Baucher, M .
ANNUAL REVIEW OF PLANT BIOLOGY, 2003, 54 :519-546
[5]   REF4 and RFR1, Subunits of the Transcriptional Coregulatory Complex Mediator, Are Required for Phenylpropanoid Homeostasis in Arabidopsis [J].
Bonawitz, Nicholas D. ;
Soltau, Whitney L. ;
Blatchley, Michael R. ;
Powers, Brendan L. ;
Hurlock, Anna K. ;
Seals, Leslie A. ;
Weng, Jing-Ke ;
Stout, Jake ;
Chapple, Clint .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2012, 287 (08) :5434-5445
[6]   The Genetics of Lignin Biosynthesis: Connecting Genotype to Phenotype [J].
Bonawitz, Nicholas D. ;
Chapple, Clint .
ANNUAL REVIEW OF GENETICS, VOL 44, 2010, 44 :337-363
[7]   Flavonoids act as negative regulators of auxin transport in vivo in Arabidopsis [J].
Brown, DE ;
Rashotte, AM ;
Murphy, AS ;
Normanly, J ;
Tague, BW ;
Peer, WA ;
Taiz, L ;
Muday, GK .
PLANT PHYSIOLOGY, 2001, 126 (02) :524-535
[8]   Environmental significance of anthocyanins in plant stress responses [J].
Chalker-Scott, L .
PHOTOCHEMISTRY AND PHOTOBIOLOGY, 1999, 70 (01) :1-9
[9]   Lignin modification improves fermentable sugar yields for biofuel production [J].
Chen, Fang ;
Dixon, Richard A. .
NATURE BIOTECHNOLOGY, 2007, 25 (07) :759-761
[10]   Biosynthesis of salicylic acid in plants [J].
Chen, Zhixiang ;
Zheng, Zuyu ;
Huang, Junli ;
Lai, Zhibing ;
Fan, Baofang .
PLANT SIGNALING & BEHAVIOR, 2009, 4 (06) :493-496