The massless three-loop Wilson coefficients for the deep-inelastic structure functions F2, FL, xF3 and g1

被引:29
作者
Bluemlein, J. [1 ]
Marquard, P. [1 ]
Schneider, C. [2 ]
Schoenwald, K. [3 ]
机构
[1] DESY, DESY, Platanenallee 6, D-15738 Zeuthen, Germany
[2] Johannes Kepler Univ Linz, Res Inst Symbol Computat, Altenberger Str 69, A-4040 Linz, Austria
[3] Karlsruher Inst Technol, Inst Theoret Teilchenphys, D-76128 Karlsruhe, Germany
基金
奥地利科学基金会; 欧盟地平线“2020”;
关键词
Deep Inelastic Scattering or Small-x Physics; Higher-Order Perturbative Calculations; Renormalization Group; The Strong Coupling; POLARIZED STRUCTURE FUNCTIONS; HEAVY FLAVOR CONTRIBUTIONS; ORDINARY DIFFERENCE-EQUATIONS; SINGLET STRUCTURE FUNCTIONS; OPERATOR MATRIX-ELEMENTS; QCD BETA-FUNCTION; TO-LEADING ORDER; BJORKEN SUM-RULE; SPLITTING FUNCTIONS; HARMONIC SUMS;
D O I
10.1007/JHEP11(2022)156
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We calculate the massless unpolarized Wilson coefficients for deeply inelastic scattering for the structure functions F-2(x, Q(2)), F-L(x, Q(2)), xF(3)(x, Q(2)) in the (MS) over bar scheme and the polarized Wilson coefficients of the structure function g(1)(x, Q(2)) in the Larin scheme up to three-loop order in QCD in a fully automated way based on the method of arbitrary high Mellin moments. We work in the Larin scheme in the case of contributing axial-vector couplings or polarized nucleons. For the unpolarized structure functions we compare to results given in the literature. The polarized three-loop Wilson coefficients are calculated for the first time. As a by-product we also obtain the quarkonic three-loop anomalous dimensions from the O(1/epsilon) terms of the unrenormalized forward Compton amplitude. Expansions for small and large values of the Bjorken variable x are provided.
引用
收藏
页数:84
相关论文
共 186 条
[1]   The two -mass contribution to the three -loop polarized gluonic operator matrix element A (3) gg,Q [J].
Ablinger, J. ;
Bluemlein, J. ;
De Freitas, A. ;
Goedicke, A. ;
Saragnese, M. ;
Schneider, C. ;
Schoenwald, K. .
NUCLEAR PHYSICS B, 2020, 955
[2]   The three-loop single mass polarized pure singlet operator matrix element [J].
Ablinger, J. ;
Behring, A. ;
Bluemlein, J. ;
De Freitas, A. ;
von Manteuffel, A. ;
Schneider, C. ;
Schoenwald, K. .
NUCLEAR PHYSICS B, 2020, 953
[3]   The three-loop polarized pure singlet operator matrix element with two different masses [J].
Ablinger, J. ;
Bluemlein, J. ;
De Freitas, A. ;
Saragnese, M. ;
Schneider, C. ;
Schoenwald, K. .
NUCLEAR PHYSICS B, 2020, 952
[4]   Automated solution of first order factorizable systems of differential equations in one variable [J].
Ablinger, J. ;
Bluemlein, J. ;
Marquard, P. ;
Rana, N. ;
Schneider, C. .
NUCLEAR PHYSICS B, 2019, 939 :253-291
[5]   The two-mass contribution to the three-loop gluonic operator matrix element Agg, Q(3) [J].
Ablinger, J. ;
Bluemlein, J. ;
De Freitas, A. ;
Goedicke, A. ;
Schneider, C. ;
Schoenwald, K. .
NUCLEAR PHYSICS B, 2018, 932 :129-240
[6]   The two-mass contribution to the three-loop pure singlet operator matrix element [J].
Ablinger, J. ;
Bluemlein, J. ;
De Freitas, A. ;
Schneider, C. ;
Schoenwald, K. .
NUCLEAR PHYSICS B, 2018, 927 :339-367
[7]   The three-loop splitting functions Pqg(2) qgand Pgg(2, NF) [J].
Ablinger, J. ;
Behring, A. ;
Bluemlein, J. ;
De Freitas, A. ;
von Manteuffel, A. ;
Schneider, C. .
NUCLEAR PHYSICS B, 2017, 922 :1-40
[8]   Three loop massive operator matrix elements and asymptotic Wilson coefficients with two different masses [J].
Ablinger, J. ;
Bluemlein, J. ;
De Freitas, A. ;
Hasselhuhn, A. ;
Schneider, C. ;
Wissbrock, F. .
NUCLEAR PHYSICS B, 2017, 921 :585-688
[9]   The 3-loop pure singlet heavy flavor contributions to the structure function F2(x, Q2) and the anomalous dimension [J].
Ablinger, J. ;
Behring, A. ;
Bluemlein, J. ;
De Freitas, A. ;
von Manteuffel, A. ;
Schneider, C. .
NUCLEAR PHYSICS B, 2015, 890 :48-151
[10]   Iterated binomial sums and their associated iterated integrals [J].
Ablinger, J. ;
Bluemlein, J. ;
Raab, C. G. ;
Schneider, C. .
JOURNAL OF MATHEMATICAL PHYSICS, 2014, 55 (11)