Planar Zintl-phase high-temperature thermoelectric materials XCuSb (X = Ca, Sr, Ba) with low lattice thermal conductivity

被引:25
作者
Zheng, Sikang [1 ,2 ]
Peng, Kunling [6 ]
Xiao, Shijuan [1 ,2 ]
Zhou, Zizhen [1 ,2 ]
Lu, Xu [1 ,2 ]
Han, Guang [4 ]
Zhang, Bin [1 ,2 ,5 ]
Wang, Guoyu [3 ]
Zhou, Xiaoyuan [1 ,2 ,5 ]
机构
[1] Chongqing Univ, Coll Phys, Chongqing 401331, Peoples R China
[2] Chongqing Univ, Ctr Quantum Mat & Devices, Chongqing 401331, Peoples R China
[3] Chinese Acad Sci, Chongqing Inst Green & Intelligent Technol, Chongqing 400714, Peoples R China
[4] Chongqing Univ, Coll Mat Sci & Engn, Chongqing 400045, Peoples R China
[5] Chongqing Univ, Analyt & Testing Ctr, Chongqing 401331, Peoples R China
[6] Nanjing Univ Sci & Technol, Interdisciplinary Ctr Fundamental & Frontier Sci, Jiangyin 214443, Peoples R China
基金
中国国家自然科学基金;
关键词
Zintl-phase; thermoelectric materials; honeycomb lattice; intrinsic low kappa(L); INITIO MOLECULAR-DYNAMICS; ELECTRONIC-STRUCTURE; PERFORMANCE; TRANSITION;
D O I
10.1007/s40145-022-0634-y
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
A recent discovery of high-performance Mg3Sb2 has ignited tremendous research activities in searching for novel Zintl-phase compounds as promising thermoelectric materials. Herein, a series of planar Zintl-phase XCuSb (X = Ca, Sr, Ba) thermoelectric materials are developed by vacuum induction melting. All these compounds exhibit high carrier mobilities and intrinsic low lattice thermal conductivities (below 1 W.m(-1).K-1 at 1010 K), resulting in peak p-type zT values of 0.14, 0.30, and 0.48 for CaCuSb, SrCuSb, and BaCuSb, respectively. By using BaCuSb as a prototypical example, the origins of low lattice thermal conductivity are attributed to the strong interlayer vibrational anharmonicity of Cu-Sb honeycomb sublattice. Moreover, the first-principles calculations reveal that n-type BaCuSb can achieve superior thermoelectric performance with the peak zT beyond 1.1 because of larger conducting band degeneracy. This work sheds light on the high-temperature thermoelectric potential of planar Zintl compounds, thereby stimulating intense interest in the investigation of this unexplored material family for higher zT values.
引用
收藏
页码:1604 / 1612
页数:9
相关论文
共 53 条
[1]   A valence balanced rule for discovery of 18-electron half-Heuslers with defects [J].
Anand, Shashwat ;
Xia, Kaiyang ;
Hegde, Vinay I. ;
Aydemir, Umut ;
Kocevski, Vancho ;
Zhu, Tiejun ;
Wolverton, Chris ;
Snyder, G. Jeffrey .
ENERGY & ENVIRONMENTAL SCIENCE, 2018, 11 (06) :1480-1488
[2]   Glass-like lattice thermal conductivity and high thermoelectric efficiency in Yb9Mn4.2Sb9 [J].
Bux, Sabah K. ;
Zevalkink, Alexandra ;
Janka, Oliver ;
Uhl, David ;
Kauzlarich, Susan ;
Snyder, Jeffrey G. ;
Fleurial, Jean-Pierre .
JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (01) :215-220
[3]   Intrinsic nanostructure induced ultralow thermal conductivity yields enhanced thermoelectric performance in Zintl phase Eu2ZnSb2 [J].
Chen, Chen ;
Feng, Zhenzhen ;
Yao, Honghao ;
Cao, Feng ;
Lei, Bing-Hua ;
Wang, Yumei ;
Chen, Yue ;
Singh, David J. ;
Zhang, Qian .
NATURE COMMUNICATIONS, 2021, 12 (01)
[4]   Zintl-phase Eu2ZnSb2: A promising thermoelectric material with ultralow thermal conductivity [J].
Chen, Chen ;
Xue, Wenhua ;
Li, Shan ;
Zhang, Zongwei ;
Li, Xiaofang ;
Wang, Xinyu ;
Liu, Yijie ;
Sui, Jiehe ;
Liu, Xingjun ;
Cao, Feng ;
Ren, Zhifeng ;
Chu, Ching-Wu ;
Wang, Yumei ;
Zhang, Qian .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2019, 116 (08) :2831-2836
[5]   Realizing enhanced thermoelectric properties in Cu2S-alloyed SnSe based composites produced via solution synthesis and sintering [J].
Chen, Yao ;
Chen, Jie ;
Zhang, Bin ;
Yang, Meiling ;
Liu, Xiaofang ;
Wang, Hengyang ;
Yang, Lei ;
Wang, Guoyu ;
Han, Guang ;
Zhou, Xiaoyuan .
JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2021, 78 :121-130
[6]   Atomic-Scale Visualization and Quantification of Configurational Entropy in Relation to Thermal Conductivity: A Proof-of-Principle Study in t-GeSb2Te4 [J].
Chen, Yongjin ;
Zhang, Bin ;
Zhang, Yongsheng ;
Wu, Hong ;
Peng, Kunling ;
Yang, Hengquan ;
Zhang, Qing ;
Liu, Xiaopeng ;
Chai, Yisheng ;
Lu, Xu ;
Wang, Guoyu ;
Zhang, Ze ;
He, Jian ;
Han, Xiaodong ;
Zhou, Xiaoyuan .
ADVANCED SCIENCE, 2021, 8 (08)
[7]   QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials [J].
Giannozzi, Paolo ;
Baroni, Stefano ;
Bonini, Nicola ;
Calandra, Matteo ;
Car, Roberto ;
Cavazzoni, Carlo ;
Ceresoli, Davide ;
Chiarotti, Guido L. ;
Cococcioni, Matteo ;
Dabo, Ismaila ;
Dal Corso, Andrea ;
de Gironcoli, Stefano ;
Fabris, Stefano ;
Fratesi, Guido ;
Gebauer, Ralph ;
Gerstmann, Uwe ;
Gougoussis, Christos ;
Kokalj, Anton ;
Lazzeri, Michele ;
Martin-Samos, Layla ;
Marzari, Nicola ;
Mauri, Francesco ;
Mazzarello, Riccardo ;
Paolini, Stefano ;
Pasquarello, Alfredo ;
Paulatto, Lorenzo ;
Sbraccia, Carlo ;
Scandolo, Sandro ;
Sclauzero, Gabriele ;
Seitsonen, Ari P. ;
Smogunov, Alexander ;
Umari, Paolo ;
Wentzcovitch, Renata M. .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2009, 21 (39)
[8]   Electron-phonon interaction using Wannier functions [J].
Giustino, Feliciano ;
Cohen, Marvin L. ;
Louie, Steven G. .
PHYSICAL REVIEW B, 2007, 76 (16)
[9]   Ab-initio simulations of materials using VASP:: Density-functional theory and beyond [J].
Hafner, Juergen .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 2008, 29 (13) :2044-2078
[10]   High thermoelectric performance in low-cost SnS0.91Se0.09 crystals [J].
He, Wenke ;
Wang, Dongyang ;
Wu, Haijun ;
Xiao, Yu ;
Zhang, Yang ;
He, Dongsheng ;
Feng, Yue ;
Hao, Yu-Jie ;
Dong, Jin-Feng ;
Chetty, Raju ;
Hao, Lijie ;
Chen, Dongfeng ;
Qin, Jianfei ;
Yang, Qiang ;
Li, Xin ;
Song, Jian-Ming ;
Zhu, Yingcai ;
Xu, Wei ;
Niu, Changlei ;
Li, Xin ;
Wang, Guangtao ;
Liu, Chang ;
Ohta, Michibiro ;
Pennycook, Stephen J. ;
He, Jiaqing ;
Li, Jing-Feng ;
Zhao, Li-Dong .
SCIENCE, 2019, 365 (6460) :1418-+