MOLECULAR DYNAMICS/XFEM COUPLING BY A THREE-DIMENSIONAL EXTENDED BRIDGING DOMAIN WITH APPLICATIONS TO DYNAMIC BRITTLE FRACTURE

被引:79
作者
Talebi, H. [1 ]
Silani, M. [2 ]
Bordas, S. P. A. [3 ]
Kerfriden, P. [3 ]
Rabczuk, T. [1 ,4 ]
机构
[1] Bauhaus Univ Weimar, Inst Struct Mech, D-99423 Weimar, Germany
[2] Isfahan Univ Technol, Dept Mech Engn, Esfahan 8415683111, Iran
[3] Cardiff Univ, Inst Mech & Adv Mat Theoret & Computat Mech, Cardiff CF24 3AA, S Glam, Wales
[4] Korea Univ, Sch Civil Environm & Architectural Engn, Seoul, South Korea
基金
英国工程与自然科学研究理事会; 欧洲研究理事会;
关键词
multiscale; atomistic simulation; extended finite elements; crack; FINITE-ELEMENT-METHOD; CRACK-GROWTH; DISLOCATION NUCLEATION; MESHLESS METHODS; MODELING ERROR; SIMULATION; ENRICHMENT; PARTITION; DESIGN;
D O I
10.1615/IntJMultCompEng.2013005838
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We propose a method to couple a three-dimensional continuum domain to a molecular dynamics domain to simulate propagating cracks in dynamics. The continuum domain is treated by an extended finite element method to handle the discontinuities. The coupling is based on the bridging domain method, which blends the continuum and atomistic energies. The Lennard-Jones potential is used to model the interactions in the atomistic domain, and the Cauchy-Born rule is used to compute the material behavior in the continuum domain. To our knowledge, it is the first time that a three dimensional extended bridging domain method is reported. To show the suitability of the proposed method, a three-dimensional crack problem with an atomistic region around the crack front is solved. The results show that the method is capable of handling crack propagation and dislocation nucleation.
引用
收藏
页码:527 / 541
页数:15
相关论文
共 58 条
[1]   Stability and size-dependency of Cauchy-Born hypothesis in three-dimensional applications [J].
Aghaei, A. ;
Qomi, M. J. Abdolhosseini ;
Kazemi, M. T. ;
Khoei, A. R. .
INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2009, 46 (09) :1925-1936
[2]   A finite temperature bridging domain method for MD-FE coupling and application to a contact problem [J].
Anciaux, G. ;
Ramisetti, S. B. ;
Molinari, J. F. .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2012, 205 :204-212
[3]  
[Anonymous], 1992, NUMERICAL RECIPES FO
[4]  
[Anonymous], 2011, ABAQUS 6 11 STAND US
[5]   Energy conservation of atomistic/continuum coupling [J].
Aubertin, Pascal ;
Rethore, Julien ;
de Borst, Rene .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2009, 78 (11) :1365-1386
[6]   SPECIAL FINITE-ELEMENT METHODS FOR A CLASS OF 2ND-ORDER ELLIPTIC PROBLEMS WITH ROUGH COEFFICIENTS [J].
BABUSKA, I ;
CALOZ, G ;
OSBORN, JE .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1994, 31 (04) :945-981
[7]  
Babuska I, 1997, INT J NUMER METH ENG, V40, P727, DOI 10.1002/(SICI)1097-0207(19970228)40:4<727::AID-NME86>3.0.CO
[8]  
2-N
[9]   A new weight-function enrichment in meshless methods for multiple cracks in linear elasticity [J].
Barbieri, E. ;
Petrinic, N. ;
Meo, M. ;
Tagarielli, V. L. .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2012, 90 (02) :177-195
[10]  
Belytschko T, 1999, INT J NUMER METH ENG, V45, P601, DOI 10.1002/(SICI)1097-0207(19990620)45:5<601::AID-NME598>3.0.CO