On Abrikosov Lattice Solutions of the Ginzburg-Landau Equations

被引:3
作者
Chenn, Ilias [1 ]
Smyrnelis, Panayotis [2 ]
Sigal, Israel Michael [1 ]
机构
[1] Univ Toronto, Dept Math, Toronto, ON, Canada
[2] Univ Chile, CNRS, Ctr Modelamiento Matemat, UMI 2807, Santiago, Chile
基金
加拿大自然科学与工程研究理事会;
关键词
Magnetic vortices; Superconductivity; Ginzburg-Landau equations; Abrikosov vortex lattices; Bifurcations; SUPERCONDUCTIVITY; BIFURCATIONS;
D O I
10.1007/s11040-017-9257-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove existence of Abrikosov vortex lattice solutions of the Ginzburg-Landau equations of superconductivity, with multiple magnetic flux quanta per fundamental cell. We also revisit the existence proof for the Abrikosov vortex lattices, streamlining some arguments and providing some essential details missing in earlier proofs for a single magnetic flux quantum per a fundamental cell.
引用
收藏
页数:40
相关论文
共 28 条
[1]  
Aftalion A, 2007, SEL MATH-NEW SER, V13, P183, DOI 10.1007/s00029-007-0043-7
[2]   On the bifurcation and stability of periodic solutions of the Ginzburg-Landau equations in the plane [J].
Almog, Y .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2000, 61 (01) :149-171
[3]   Abrikosov lattices in finite domains [J].
Almog, Y .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2006, 262 (03) :677-702
[4]  
[Anonymous], 1957, J EXPLT THEORET PHYS
[5]   BIFURCATIONS WITH LOCAL GAUGE SYMMETRIES IN THE GINZBURG-LANDAU EQUATIONS [J].
BARANY, E ;
GOLUBITSKY, M ;
TURSKI, J .
PHYSICA D, 1992, 56 (01) :36-56
[6]  
Chapman S.J., 1994, EUR J APPL MATH, V5, P449
[7]   MACROSCOPIC MODELS FOR SUPERCONDUCTIVITY [J].
CHAPMAN, SJ ;
HOWISON, SD ;
OCKENDON, JR .
SIAM REVIEW, 1992, 34 (04) :529-560
[8]  
Chouchkov D., 2017, ARXIV170403422
[9]   ANALYSIS AND APPROXIMATION OF THE GINZBURG-LANDAU MODEL OF SUPERCONDUCTIVITY [J].
DU, Q ;
GUNZBURGER, MD ;
PETERSON, JS .
SIAM REVIEW, 1992, 34 (01) :54-81
[10]  
Dubrovin D. A., 1984, MODERN GEOMETRY METH