Commutators of Higher Order Riesz Transform Associated with Schrodinger Operators

被引:6
作者
Liu, Yu [1 ]
Wang, Lijuan [1 ]
Dong, Jianfeng [2 ]
机构
[1] Univ Sci & Technol Beijing, Sch Math & Phys, Beijing 100083, Peoples R China
[2] Shanghai Univ, Dept Math, Shanghai 200444, Peoples R China
来源
JOURNAL OF FUNCTION SPACES AND APPLICATIONS | 2013年
基金
中国国家自然科学基金; 高等学校博士学科点专项科研基金;
关键词
SINGULAR-INTEGRALS; HARDY-SPACES; BOUNDEDNESS; L(P);
D O I
10.1155/2013/842375
中图分类号
学科分类号
摘要
Let L = Delta + V be a Schrodinger operator on R-n (n >= 3), where V not equal 0 is a nonnegative potential belonging to certain reverse Holder class B-s for s >= n/ 2. In this paper, we prove the boundedness of commutators R-b(H) f = bR(H) f - R-H (bf) generated by the higher order Riesz transform R-H = del(2) (-Delta + V)(1), where b is an element of BMO theta(rho), which is larger than the space BMO(R-n). Moreover, we prove that R-b(h) is bounded from the Hardy space H-L(1)(R-n) into weak L-weak(1) (R-n).
引用
收藏
页数:15
相关论文
共 25 条
[1]   Commutators of Riesz Transforms Related to Schrodinger Operators [J].
Bongioanni, B. ;
Harboure, E. ;
Salinas, O. .
JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2011, 17 (01) :115-134
[2]  
Bramanti M, 1996, B UNIONE MAT ITAL, V10B, P843
[3]   FACTORIZATION THEOREMS FOR HARDY SPACES IN SEVERAL VARIABLES [J].
COIFMAN, RR ;
ROCHBERG, R ;
WEISS, G .
ANNALS OF MATHEMATICS, 1976, 103 (03) :611-635
[4]   The higher order Riesz transform and BMO type space associated to Schrodinger operators [J].
Dong, Jianfeng ;
Liu, Yu .
MATHEMATISCHE NACHRICHTEN, 2012, 285 (04) :486-496
[5]   Commutators of BMO functions and singular integral operators with non-smooth kernels [J].
Duong, XT ;
Yan, LX .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2003, 67 (02) :187-200
[6]   Endpoint estimates for Riesz transforms of magnetic Schrodinger operators [J].
Duong, Xuan Thinh ;
Ouhabaz, El Maati ;
Yan, Lixin .
ARKIV FOR MATEMATIK, 2006, 44 (02) :261-275
[7]  
Dziubanski J, 1999, REV MAT IBEROAM, V15, P279
[8]   THE UNCERTAINTY PRINCIPLE [J].
FEFFERMAN, CL .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1983, 9 (02) :129-206
[9]   Lp boundedness of commutators of Riesz transforms associated to Schrodinger operator [J].
Guo, Zihua ;
Li, Pengtao ;
Peng, Lizhong .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 341 (01) :421-432
[10]   MEAN OSCILLATION AND COMMUTATORS OF SINGULAR INTEGRAL-OPERATORS [J].
JANSON, S .
ARKIV FOR MATEMATIK, 1978, 16 (02) :263-270