Mg-based metastable nano alloys for hydrogen storage

被引:74
|
作者
Li, Bo [1 ]
Li, Jianding [1 ]
Zhao, Huajun [1 ]
Yu, Xueqing [1 ]
Shao, Huaiyu [1 ]
机构
[1] Univ Macau, IAPME, Minist Educ, Joint Key Lab, Macau, Peoples R China
关键词
Metastable; Hydrogen storage; Nano alloy; Mg; ELECTROCHEMICAL CHARACTERISTICS; ELECTRODE PROPERTIES; INTERMETALLIC COMPOUND; MECHANICAL-PROPERTIES; ULTRAFINE PARTICLES; SORPTION KINETICS; NI; MAGNESIUM; MG2NI; CO;
D O I
10.1016/j.ijhydene.2019.01.127
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Mg-based materials have been widely researched for hydrogen storage development due to the low price of Mg, abundant resources of Mg element in the earth's crust and the high hydrogen capacity (ca. 7.7 mass% for MgH2). However, the challenges of poor kinetics, unsuitable thermodynamic properties, large volume change during hydrogen sorption cycles have greatly hindered the practical applications. Here in this review, our recent achievements of a new research direction on Mg-based metastable nano alloys with a Body-Centered Cubic (BCC) lattice structure are summarized. Different with other metals/ alloys/complex hydrides etc. which involve significant lattice structure and volume change from hydrogen introduction and release, one unique nature of this kind of metastable nano alloys is that the lattice structure does not change obviously with hydrogen absorption and desorption, which brings interesting phenomenon in microstructure properties and hydrogen storage performances (outstanding kinetics at low temperature and super high hydrogen capacity potential). The synthesis results, morphology and microstructure characterization, formation evolution mechanisms, hydrogen storage performances and geometrical effect of these metastable nano alloys are discussed. The nanostructure, fresh surface from ball milling process and fast hydrogen diffusion rate in BCC lattice structure, as well as the unique nature of maintaining original BCC metal lattice during hydrogenation result in outstanding hydrogen storage performances for Mg-based metastable nano alloys. This work may open a new sight to develop new generation hydrogen storage materials. (C) 2019 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:6007 / 6018
页数:12
相关论文
共 50 条
  • [31] Properties of Mg-based materials for hydrogen storage
    Vojtech, D.
    Novak, P.
    Cizkovsky, J.
    Knotek, V.
    Prusa, F.
    JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 2007, 68 (5-6) : 813 - 817
  • [32] Mg-based compounds for hydrogen and energy storage
    Crivello, J. -C.
    Denys, R. V.
    Dornheim, M.
    Felderhoff, M.
    Grant, D. M.
    Huot, J.
    Jensen, T. R.
    de Jongh, P.
    Latroche, M.
    Walker, G. S.
    Webb, C. J.
    Yartys, V. A.
    APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2016, 122 (02): : 1 - 17
  • [33] Development of Mg-based Hydrogen Storage Alloy
    Lian bang WANG
    JournalofMaterialsScience&Technology, 2001, (06) : 590 - 596
  • [34] Mg-based compounds for hydrogen and energy storage
    J.-C. Crivello
    R. V. Denys
    M. Dornheim
    M. Felderhoff
    D. M. Grant
    J. Huot
    T. R. Jensen
    P. de Jongh
    M. Latroche
    G. S. Walker
    C. J. Webb
    V. A. Yartys
    Applied Physics A, 2016, 122
  • [35] HYBRID Mg-BASED MATERIALS FOR HYDROGEN STORAGE
    Jarzebski, Maciej
    Okonska, Izabela
    Jurczyk, Mieczyslaw
    NANOCON 2009, CONFERENCE PROCEEDINGS, 2009, : 211 - 216
  • [36] Development of Mg-based hydrogen storage alloy
    Wang, LB
    Wang, YJ
    Yuan, HT
    JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2001, 17 (06) : 590 - 596
  • [37] Nanoscale Mg-based materials for hydrogen storage
    Jurczyk, M.
    Smardz, L.
    Okonska, I.
    Jankowska, E.
    Nowak, M.
    Smardz, K.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2008, 33 (01) : 374 - 380
  • [38] Nanotechnology in Mg-based materials for hydrogen storage
    Shao, Huaiyu
    Xin, Gongbiao
    Zheng, Jie
    Li, Xingguo
    Akiba, Etsuo
    NANO ENERGY, 2012, 1 (04) : 590 - 601
  • [39] Fast Forging: A new SPD method to synthesize Mg-based alloys for hydrogen storage
    de Rango, Patricia
    Fruchart, Daniel
    Aptukov, Valery
    Skryabina, Nataliya
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2020, 45 (14) : 7912 - 7916
  • [40] The cycle life prediction of Mg-based hydrogen storage alloys by artificial neural network
    Tian, Qifeng
    Zhang, Yao
    Wu, Yuanxin
    Tan, Zhicheng
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2009, 34 (04) : 1931 - 1936