ADDITIVITY OF JORDAN (TRIPLE) DERIVATIONS ON RINGS

被引:21
作者
Jing, Wu [1 ]
Lu, Fangyan [2 ]
机构
[1] Fayetteville State Univ, Dept Math & Comp Sci, Fayetteville, NC 28301 USA
[2] Suzhou Univ, Dept Math, Suzhou 215006, Peoples R China
关键词
Additivity; Derivations; Idempotents; Jordan derivations; Jordan triple derivations; Peirce decomposition; Prime rings; Semiprime rings; Standard operator algebras; SEMIPRIME RINGS; MAPS; MAPPINGS;
D O I
10.1080/00927872.2011.584927
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let delta be a mapping from ring R into itself satisfying delta(ab + ba) = delta(a)b + a delta(b) + delta(b)a + b delta(a) or delta(aba) = delta(a)ba + a delta(b)a + ab delta(a) for all a, b is an element of R. Under some conditions on R, we show that delta is additive.
引用
收藏
页码:2700 / 2719
页数:20
相关论文
共 8 条
[1]  
[Anonymous], P AM MATH SOC
[2]   JORDAN MAPPINGS OF SEMIPRIME RINGS [J].
BRESAR, M .
JOURNAL OF ALGEBRA, 1989, 127 (01) :218-228
[3]   Jordan elementary maps on rings [J].
Li, PT ;
Jing, W .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2004, 382 :237-245
[4]   JORDAN DERIVABLE MAPS OF PRIME RINGS [J].
Lu, Fangyan .
COMMUNICATIONS IN ALGEBRA, 2010, 38 (12) :4430-4440
[5]   Jordan triple maps [J].
Lu, FY .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2003, 375 (1-3) :311-317
[6]   Additivity of Jordan maps on standard operator algebras [J].
Lu, FY .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2002, 357 :123-131
[7]   WHEN ARE MULTIPLICATIVE MAPPINGS ADDITIVE [J].
MARTINDALE, WS .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1969, 21 (03) :695-+
[8]  
Molnar L, 2002, FUNCTIONAL EQUATIONS