High-Speed Quantum Key Distribution System for 1-Mbps Real-Time Key Generation

被引:82
作者
Tanaka, Akihiro [1 ]
Fujiwara, Mikio [2 ]
Yoshino, Ken-ichiro [1 ]
Takahashi, Seigo [1 ]
Nambu, Yoshihiro [3 ]
Tomita, Akihisa [5 ]
Miki, Shigehito [4 ]
Yamashita, Taro [4 ]
Wang, Zhen [4 ]
Sasaki, Masahide [2 ]
Tajima, Akio [1 ]
机构
[1] NEC Corp Ltd, Syst Platforms Res Labs, Kawasaki, Kanagawa 2118666, Japan
[2] Natl Inst Informat & Commun Technol, Quantum ICT Lab, Tokyo 1848795, Japan
[3] NEC Corp Ltd, Green Innovat Res Labs, Ibaraki 3058501, Japan
[4] Natl Inst Informat & Commun Technol, Nano ICT Lab, Tokyo 1848795, Japan
[5] Hokkaido Univ, Grad Sch Informat Sci & Technol, Sapporo, Hokkaido 0600814, Japan
关键词
Field programmable gate arrays; quantum key distribution; wavelength division multiplexing; FIELD-TEST;
D O I
10.1109/JQE.2012.2187327
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A high-speed quantum key distribution (QKD) system has been developed with the goal of a 1-Mbps final secure key generation rate under 10-dB transmission loss, which corresponds to 50 km of standard single mode fiber. For the purpose of speeding-up all processes in QKD sequence, we apply a wavelength-division-multiplexing (WDM) technique using the colorless interferometric technique and a key distillation hardware (HW) engine. We establish a novel WDM scheme, sharing interferometers and their temperature regulators over multiple channels, which enables us to increase the number of channels with a small impact on system cost and size. To generate a secure key while satisfying both high speed and high security, we develop a key distillation HW engine which enables us to execute key distillation with 1-Mbit code length in real time. We have experimentally evaluated the performance of the developed system through installed fiber. By operating three wavelength channels, a new, world leading key generation rate of greater than 200 kbps over a 14.5-dB transmission loss has been achieved.
引用
收藏
页码:542 / 550
页数:9
相关论文
共 36 条
  • [1] [Anonymous], 1984, P IEEE INT C COMP, DOI DOI 10.1016/J.TCS.2014.05.025
  • [2] [Anonymous], FED INF PROC STAND P
  • [3] Bennett C. H., 1991, J CRYPTOL, V5, P3
  • [4] PRIVACY AMPLIFICATION BY PUBLIC DISCUSSION
    BENNETT, CH
    BRASSARD, G
    ROBERT, JM
    [J]. SIAM JOURNAL ON COMPUTING, 1988, 17 (02) : 210 - 229
  • [5] Quantum key distribution with 1.25 Gbps clock synchronization
    Bienfang, JC
    Gross, AJ
    Mink, A
    Hershman, BJ
    Nakassis, A
    Tang, X
    Lu, R
    Su, DH
    Clark, CW
    Williams, CJ
    Hagley, EW
    Wen, J
    [J]. OPTICS EXPRESS, 2004, 12 (09): : 2011 - 2016
  • [6] Brassard G., 1993, ADV CRYPTOLOGY EUROC, P411
  • [7] Single-photon generation and detection
    Buller, G. S.
    Collins, R. J.
    [J]. MEASUREMENT SCIENCE AND TECHNOLOGY, 2010, 21 (01)
  • [8] Fast, efficient error reconciliation for quantum cryptography
    Buttler, WT
    Lamoreaux, SK
    Torgerson, JR
    Nickel, GH
    Donahue, CH
    Peterson, CG
    [J]. PHYSICAL REVIEW A, 2003, 67 (05) : 8
  • [9] Continuous operation of high bit rate quantum key distribution
    Dixon, A. R.
    Yuan, Z. L.
    Dynes, J. F.
    Sharpe, A. W.
    Shields, A. J.
    [J]. APPLIED PHYSICS LETTERS, 2010, 96 (16)
  • [10] Efficient reconciliation protocol for discrete-variable quantum key distribution
    Elkouss, David
    Leverrier, Anthony
    Alleaume, Romain
    Boutros, Joseph J.
    [J]. 2009 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, VOLS 1- 4, 2009, : 1879 - +