Electronic properties of mixed-phase graphene/h-BN sheets using real-space pseudopotentials

被引:13
作者
Huang, ZhaoHui [1 ]
Crespi, Vincent H. [2 ]
Chelikowsky, James R. [1 ,3 ,4 ]
机构
[1] Univ Texas Austin, Inst Computat Engn & Sci, Ctr Computat Mat, Austin, TX 78735 USA
[2] Penn State Univ, Dept Phys, State Coll, PA 16802 USA
[3] Univ Texas Austin, Dept Phys, Austin, TX 78735 USA
[4] Univ Texas Austin, Dept Chem Engn, Austin, TX 78735 USA
来源
PHYSICAL REVIEW B | 2013年 / 88卷 / 23期
关键词
HEXAGONAL BORON-NITRIDE; ATOMIC LAYERS; CARBON; FIELD;
D O I
10.1103/PhysRevB.88.235425
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A major challenge for applications of graphene is the creation of a tunable electronic band gap. Hexagonal boron nitride has a lattice very similar to that of graphene and a much larger band gap, but B-N and C do not alloy: B-C-N materials tend to phase separate into h-BN and C domains. Quantum confinement within the finite-sized C domains of a mixed B-C-N system can create a band gap, albeit within an inhomogeneous system. Here we investigate the properties of hybrid h-BN/C sheets with real-space pseudopotential density functional theory. We find that the electronic properties are determined not just by geometrical confinement, but also by the bonding character at the h-BN/C interface. B-C terminated carbon regions tend to have larger gaps than N-C terminated regions, suggesting that boron-carbon bonds are more stable. We examine two series of symmetric structures that represent different kinds of confinement: a graphene dot within a h-BN background and a h-BN antidot within a graphene background. The gaps in both cases vary inversely with the size of the graphenic region, as expected, and can be fit by simple empirical expressions.
引用
收藏
页数:6
相关论文
共 29 条
[1]   Bilbao crystallographic server: I. Databases and crystallographic computing programs [J].
Aroyo, MI ;
Perez-Mato, JM ;
Capillas, C ;
Kroumova, E ;
Ivantchev, S ;
Madariaga, G ;
Kirov, A ;
Wondratschek, H .
ZEITSCHRIFT FUR KRISTALLOGRAPHIE, 2006, 221 (01) :15-27
[2]   Complex edge effects in zigzag graphene nanoribbons due to hydrogen loading [J].
Bhandary, Sumanta ;
Eriksson, Olle ;
Sanyal, Biplab ;
Katsnelson, Mikhail I. .
PHYSICAL REVIEW B, 2010, 82 (16)
[3]   Quantum Dots and Nanoroads of Graphene Embedded in Hexagonal Boron Nitride [J].
Bhowrnick, Somnath ;
Singh, Abhishek K. ;
Yakobson, Boris I. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2011, 115 (20) :9889-9893
[4]   GROUND-STATE OF THE ELECTRON-GAS BY A STOCHASTIC METHOD [J].
CEPERLEY, DM ;
ALDER, BJ .
PHYSICAL REVIEW LETTERS, 1980, 45 (07) :566-569
[5]   FINITE-DIFFERENCE-PSEUDOPOTENTIAL METHOD - ELECTRONIC-STRUCTURE CALCULATIONS WITHOUT A BASIS [J].
CHELIKOWSKY, JR ;
TROULLIER, N ;
SAAD, Y .
PHYSICAL REVIEW LETTERS, 1994, 72 (08) :1240-1243
[6]   HIGHER-ORDER FINITE-DIFFERENCE PSEUDOPOTENTIAL METHOD - AN APPLICATION TO DIATOMIC-MOLECULES [J].
CHELIKOWSKY, JR ;
TROULLIER, N ;
WU, K ;
SAAD, Y .
PHYSICAL REVIEW B, 1994, 50 (16) :11355-11364
[7]   Reversible fluorination of graphene: Evidence of a two-dimensional wide bandgap semiconductor [J].
Cheng, S. -H. ;
Zou, K. ;
Okino, F. ;
Gutierrez, H. R. ;
Gupta, A. ;
Shen, N. ;
Eklund, P. C. ;
Sofo, J. O. ;
Zhu, J. .
PHYSICAL REVIEW B, 2010, 81 (20)
[8]  
Ci L, 2010, NAT MATER, V9, P430, DOI [10.1038/nmat2711, 10.1038/NMAT2711]
[9]   Control of Graphene's Properties by Reversible Hydrogenation: Evidence for Graphane [J].
Elias, D. C. ;
Nair, R. R. ;
Mohiuddin, T. M. G. ;
Morozov, S. V. ;
Blake, P. ;
Halsall, M. P. ;
Ferrari, A. C. ;
Boukhvalov, D. W. ;
Katsnelson, M. I. ;
Geim, A. K. ;
Novoselov, K. S. .
SCIENCE, 2009, 323 (5914) :610-613
[10]   Manifold electronic structure transition of BNC biribbons [J].
Fan, Yingcai ;
Zhao, Mingwen ;
Zhang, Xuejuan ;
Wang, Zhenhai ;
He, Tao ;
Xia, Huihao ;
Liu, Xiangdong .
JOURNAL OF APPLIED PHYSICS, 2011, 110 (03)