Murine colon proteome and characterization of the protein pathways

被引:37
|
作者
Magdeldin, Sameh [1 ,2 ]
Yoshida, Yutaka [1 ]
Li, Huiping [1 ,3 ]
Maeda, Yoshitaka [4 ]
Yokoyama, Munesuke [4 ]
Enany, Shymaa [1 ,5 ]
Zhang, Ying [1 ]
Xu, Bo [1 ]
Fujinaka, Hidehiko [1 ]
Yaoita, Eishin [1 ]
Sasaki, Sei [6 ]
Yamamoto, Tadashi [1 ]
机构
[1] Niigata Univ, Grad Sch Med & Dent Sci, Dept Struct Pathol, Inst Nephrol, Niigata, Japan
[2] Suez Canal Univ, Fac Vet Med, Dept Physiol, Suez Canal, Egypt
[3] Sichuan Univ, West China Hosp, Dept Intens Care Unit, Chengdu, Sichuan, Peoples R China
[4] Niigata Univ, Brain Res Inst, Anim Resource Branch, Ctr Biobased Res, Niigata, Japan
[5] Suez Canal Univ, Fac Pharm, Dept Microbiol & Immunol, Suez Canal, Egypt
[6] Tokyo Med & Dent Univ, Dept Nephrol, Tokyo, Japan
来源
BIODATA MINING | 2012年 / 5卷
关键词
Colon; Proteome; Mass spectrometry; HPLC; GENE ONTOLOGY; CYTOSCAPE; IDENTIFICATION; ABSORPTION; ABUNDANCE;
D O I
10.1186/1756-0381-5-11
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Background: Most of the current proteomic researches focus on proteome alteration due to pathological disorders (i.e.: colorectal cancer) rather than normal healthy state when mentioning colon. As a result, there are lacks of information regarding normal whole tissue-colon proteome. Results: We report here a detailed murine (mouse) whole tissue-colon protein reference dataset composed of 1237 confident protein (FDR < 2) with comprehensive insight on its peptide properties, cellular and subcellular localization, functional network GO annotation analysis, and its relative abundances. The presented dataset includes wide spectra of pI and Mw ranged from 3-12 and 4-600 KDa, respectively. Gravy index scoring predicted 19.5% membranous and 80.5% globularly located proteins. GO hierarchies and functional network analysis illustrated proteins function together with their relevance and implication of several candidates in malignancy such as Mitogen-activated protein kinase (Mapk8, 9) in colorectal cancer, Fibroblast growth factor receptor (Fgfr 2), Glutathione S-transferase (Gstp1) in prostate cancer, and Cell division control protein (Cdc42), Ras-related protein (Rac1,2) in pancreatic cancer. Protein abundances calculated with 3 different algorithms (NSAF, PAF and emPAI) provide a relative quantification under normal condition as guidance. Conclusions: This highly confidence colon proteome catalogue will not only serve as a useful reference for further experiments characterizing differentially expressed proteins induced from diseased conditions, but also will aid in better understanding the ontology and functional absorptive mechanism of the colon as well.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Murine colon proteome and characterization of the protein pathways
    Sameh Magdeldin
    Yutaka Yoshida
    Huiping Li
    Yoshitaka Maeda
    Munesuke Yokoyama
    Shymaa Enany
    Ying Zhang
    Bo Xu
    Hidehiko Fujinaka
    Eishin Yaoita
    Sei Sasaki
    Tadashi Yamamoto
    BioData Mining, 5
  • [2] Preliminary characterization of the murine membrane reticulocyte proteome
    Prenni, Jessica E.
    Vidal, Michel
    Olver, Christine S.
    BLOOD CELLS MOLECULES AND DISEASES, 2012, 49 (02) : 74 - 82
  • [3] Large-Scale Characterization and Analysis of the Murine Cardiac Proteome
    Bousette, Nicolas
    Kislinger, Thomas
    Fong, Vincent
    Isserlin, Ruth
    Hewel, Johannes A.
    Emili, Andrew
    Gramolini, Anthony O.
    JOURNAL OF PROTEOME RESEARCH, 2009, 8 (04) : 1887 - 1901
  • [4] Differential Secreted Proteome Approach in Murine Model for Candidate Biomarker Discovery in Colon Cancer
    Rangiah, Kannan
    Tippornwong, Montri
    Sangar, Vineet
    Austin, David
    Tetreault, Marie-Pier
    Rustgi, Anil K.
    Blair, Ian A.
    Yu, Kenneth H.
    JOURNAL OF PROTEOME RESEARCH, 2009, 8 (11) : 5153 - 5164
  • [5] Analyses of intricate kinetics of the serum proteome during and after colon surgery by protein expression time series
    Roelofsen, Han
    Alvarez-Llamas, Gloria
    Dijkstra, Martijn
    Breitling, Rainer
    Havenga, Klaas
    Bijzet, Johan
    Zandbergen, Wouter
    de Vries, Marcel P.
    Ploeg, Rutger J.
    Vonk, Roel J.
    PROTEOMICS, 2007, 7 (17) : 3219 - 3228
  • [6] Characterization and proteome profiling of extracellular vesicles in a murine model of Staphylococcus aureus endophthalmitis
    Rudraprasad, Dhanwini
    Sushma, Mudigunda V.
    Rengan, Aravind Kumar
    Naik, Milind N.
    Joseph, Joveeta
    MICROBES AND INFECTION, 2022, 24 (08)
  • [7] Systematic characterization of the murine mitochondrial proteome using functionally validated cardiac mitochondria
    Zhang, Jun
    Li, Xiaohai
    Mueller, Michael
    Wang, Yueju
    Zong, Chenggong
    Deng, Ning
    Vondriska, Thomas M.
    Liem, David A.
    Yang, Jeong-In
    Korge, Paavo
    Honda, Henry
    Weiss, James N.
    Apweiler, Rolf
    Ping, Peipei
    PROTEOMICS, 2008, 8 (08) : 1564 - 1575
  • [8] Characterization of the canine urinary proteome
    Brandt, Laura E.
    Ehrhart, E. J.
    Scherman, Hataichanok
    Olver, Christine S.
    Bohn, Andrea A.
    Prenni, Jessica E.
    VETERINARY CLINICAL PATHOLOGY, 2014, 43 (02) : 193 - 205
  • [9] Mutant thermal proteome profiling for characterization of missense protein variants and their associated phenotypes within the proteome
    Peck Justice, Sarah A.
    Barron, Monica P.
    Qi, Guihong D.
    Wijeratne, H. R. Sagara
    Victorino, Jose F.
    Simpson, Ed R.
    Vilseck, Jonah Z.
    Wijeratne, Aruna B.
    Mosley, Amber L.
    JOURNAL OF BIOLOGICAL CHEMISTRY, 2020, 295 (48) : 16219 - 16238
  • [10] The Effects of 5-Fluorouracil on the Proteome of Colon Cancer Cells
    Marin-Vicente, Consuelo
    Lyutvinskiy, Yaroslav
    Fuertes, Patricia Romans
    Zubarev, Roman A.
    Visa, Neus
    JOURNAL OF PROTEOME RESEARCH, 2013, 12 (04) : 1969 - 1979