Separation principle of quasi-one-sided Lipschitz non-linear systems

被引:1
作者
Zhao, Yanbin [1 ]
Hu, Guang-Da [2 ]
机构
[1] Harbin Normal Univ, Dept Math, Harbin 150080, Peoples R China
[2] Shanghai Univ, Dept Math, Shanghai 200444, Peoples R China
基金
中国国家自然科学基金;
关键词
state feedback; observers; nonlinear control systems; linear matrix inequalities; stability; separation principle; state feedback controller; quasione-sided Lipschitz nonlinear systems stabilisation; observer-based controller; OBSERVER DESIGN; ROBUST OBSERVER; STABILIZATION;
D O I
10.1049/iet-cta.2019.0230
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this study, the stabilisation of quasi-one-sided Lipschitz non-linear systems is investigated. For the quasi-one-sided Lipschitz non-linear system, a condition for the existence of the observer is presented. For the weak quasi-one-sided Lipschitz non-linear system, a state feedback controller is proposed and a condition is derived for the existence of the state feedback controller. The separation principle is obtained for the observer-based controller of the quasi-one-sided Lipschitz non-linear systems. The main results in this study extend and improve those in the literature. Numerical examples are given to illustrate the main results.
引用
收藏
页码:2233 / 2241
页数:9
相关论文
共 23 条
[1]   Nonlinear H∞-control of nonsmooth time-varying systems with application to friction mechanical manipulators [J].
Aguilar, LT ;
Orlov, Y ;
Acho, L .
AUTOMATICA, 2003, 39 (09) :1531-1542
[2]   New approach to robust observer-based control of one-sided Lipschitz non-linear systems [J].
Badreddine, El Haiek ;
Hicham, El Aiss ;
Abdelaziz, Hmamed ;
Ahmed, El Hajjaji ;
Tissir, El Houssaine .
IET CONTROL THEORY AND APPLICATIONS, 2019, 13 (03) :333-342
[3]   Exponential Observer for a Class of One-Sided Lipschitz Stochastic Nonlinear Systems [J].
Barbata, Asma ;
Zasadzinski, Michel ;
Ali, Harouna Souley ;
Messaoud, Hassani .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2015, 60 (01) :259-264
[4]   Input-to-error stable observer for nonlinear sampled-data systems with application to one-sided Lipschitz systems [J].
Beikzadeh, Hossein ;
Marquez, Horacio J. .
AUTOMATICA, 2016, 67 :1-7
[5]   Observer design for one-sided Lipschitz discrete-time systems [J].
Benallouch, Mohamed ;
Boutayeb, Mohamed ;
Zasadzinski, Michel .
SYSTEMS & CONTROL LETTERS, 2012, 61 (09) :879-886
[6]  
Dekker K., 1984, STABILITY RUNGE KUTT
[7]   Passive nonlinear observer design for ships using Lyapunov methods: Full-scale experiments with a supply vessel [J].
Fossen, TI ;
Strand, JP .
AUTOMATICA, 1999, 35 (01) :3-16
[8]   Stabilization of quasi-one-sided Lipschitz nonlinear systems [J].
Fu, Fengyu ;
Hou, Mingzhe ;
Duan, Guangren .
IMA JOURNAL OF MATHEMATICAL CONTROL AND INFORMATION, 2013, 30 (02) :169-184
[9]   A note on observer for one-sided Lipschitz non-linear systems [J].
Hu, Guang-Da .
IMA JOURNAL OF MATHEMATICAL CONTROL AND INFORMATION, 2008, 25 (03) :297-303
[10]   Observers for one-sided Lipschitz non-linear systems [J].
Hu, Guang-Da .
IMA JOURNAL OF MATHEMATICAL CONTROL AND INFORMATION, 2006, 23 (04) :395-401