Multivariate Chebyshev polynomials

被引:8
作者
Lyakhovsky, V. D. [1 ]
Uvarov, Ph V. [2 ]
机构
[1] St Petersburg State Univ, High Energy Phys & Elementary Particles Dept, St Petersburg 198904, Russia
[2] St Petersburg State Univ, Chebyshev Lab, St Petersburg 198904, Russia
关键词
D O I
10.1088/1751-8113/46/12/125201
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study multivariate Chebyshev polynomials associated with root systems. Using properties of specialized singular elements Phi(;alpha)(g) corresponding to a root system Delta(g), we construct explicitly the measure weight function gamma. The latter ensures that these polynomials are orthonormal; it defines the scalar product in the function space L-2 (F, gamma) where multivariate U-type Chebyshev polynomials U-g(mu) constitute a basis. The obtained results are illustrated by constructing and studying 2-variate polynomials U-g(mu) for root systems Delta(A2), Delta(B2) and Delta(G2).
引用
收藏
页数:22
相关论文
共 24 条
[1]  
[Anonymous], INDAG MATH, DOI 10.1016/1385-7258(74)90026-2
[2]  
BACRY H, 1986, GROUP THEORETICAL ME, V1, P481
[3]  
Bacry H., 1984, LECT NOTES PHYS, V201
[4]   CHEBYSHEV POLYNOMIALS IN SEVERAL VARIABLES AND THE RADIAL PART OF THE LAPLACE-BELTRAMI OPERATOR [J].
BEERENDS, RJ .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1991, 328 (02) :779-814
[5]   CHEBYSHEV-KOORNWINDER OSCILLATOR [J].
Borzov, V. V. ;
Damaskinsky, E. V. .
THEORETICAL AND MATHEMATICAL PHYSICS, 2013, 175 (03) :763-770
[6]  
Burbaki N, 1975, ELEMENTS MATH GROUPE
[7]  
Cartier P, 1955, THEORIE ALGEBRES LIE
[8]   Cluster Multiplication in Regular Components via Generalized Chebyshev Polynomials [J].
Dupont, Gregoire .
ALGEBRAS AND REPRESENTATION THEORY, 2012, 15 (03) :527-549
[9]  
Fulton W, 1991, Representation theory: a first course, V129
[10]  
HECKMAN GJ, 1987, COMPOS MATH, V64, P353