Constructive Canonicity for Lattice-Based Fixed Point Logics

被引:10
作者
Conradie, Willem [1 ]
Craig, Andrew [1 ]
Palmigiano, Alessandra [1 ,2 ]
Zhao, Zhiguang [2 ]
机构
[1] Univ Johannesburg, Dept Pure & Appl Math, Johannesburg, South Africa
[2] Delft Univ Technol, Fac Technol Policy & Management, Delft, Netherlands
来源
LOGIC, LANGUAGE, INFORMATION, AND COMPUTATION: 24TH INTERNATIONAL WORKSHOP, WOLLIC 2017, LONDON, UK, JULY 18-21, 2017, PROCEEDINGS | 2017年 / 10388卷
基金
新加坡国家研究基金会;
关键词
Canonicity; Lattice-based fixed point logics; Logics for categorization; Unified correspondence; MODAL MU-CALCULUS; ALGORITHMIC CORRESPONDENCE; SAHLQVIST THEORY; COMPLETENESS; PROOF;
D O I
10.1007/978-3-662-55386-2_7
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In the present paper, we prove canonicity results for lattice-based fixed point logics in a constructive meta-theory. Specifically, we prove two types of canonicity results, depending on how the fixed-point binders are interpreted. These results smoothly unify the constructive canonicity results for inductive inequalities, proved in a general lattice setting, with the canonicity results for fixed point logics on a bi-intuitionistic base, proven in a non-constructive setting.
引用
收藏
页码:92 / 109
页数:18
相关论文
共 29 条
[1]   DUALITY AND THE COMPLETENESS OF THE MODAL MU-CALCULUS [J].
AMBLER, S ;
KWIATKOWSKA, M ;
MEASOR, N .
THEORETICAL COMPUTER SCIENCE, 1995, 151 (01) :3-27
[2]  
[Anonymous], ARXIV160308515
[3]  
[Anonymous], ARXIV160306547
[4]  
[Anonymous], ARXIV160308341
[5]   Least and Greatest Fixed Points in Linear Logic [J].
Baelde, David .
ACM TRANSACTIONS ON COMPUTATIONAL LOGIC, 2012, 13 (01)
[6]   Sahlqvist theorem for modal fixed point logic [J].
Bezhanishvili, Nick ;
Hodkinson, Ian .
THEORETICAL COMPUTER SCIENCE, 2012, 424 :1-19
[7]   Epistemic logics for sceptical agents [J].
Bilkova, Marta ;
Majer, Ondrej ;
Pelis, Michal .
JOURNAL OF LOGIC AND COMPUTATION, 2016, 26 (06) :1815-1841
[8]  
Britz C., 2016, THESIS
[9]  
Conradie W., 2017, EPISTEMIC LOGI UNPUB
[10]  
Conradie W., ARXIV151104271