Constructive Canonicity for Lattice-Based Fixed Point Logics

被引:10
作者
Conradie, Willem [1 ]
Craig, Andrew [1 ]
Palmigiano, Alessandra [1 ,2 ]
Zhao, Zhiguang [2 ]
机构
[1] Univ Johannesburg, Dept Pure & Appl Math, Johannesburg, South Africa
[2] Delft Univ Technol, Fac Technol Policy & Management, Delft, Netherlands
来源
LOGIC, LANGUAGE, INFORMATION, AND COMPUTATION: 24TH INTERNATIONAL WORKSHOP, WOLLIC 2017, LONDON, UK, JULY 18-21, 2017, PROCEEDINGS | 2017年 / 10388卷
基金
新加坡国家研究基金会;
关键词
Canonicity; Lattice-based fixed point logics; Logics for categorization; Unified correspondence; MODAL MU-CALCULUS; ALGORITHMIC CORRESPONDENCE; SAHLQVIST THEORY; COMPLETENESS; PROOF;
D O I
10.1007/978-3-662-55386-2_7
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In the present paper, we prove canonicity results for lattice-based fixed point logics in a constructive meta-theory. Specifically, we prove two types of canonicity results, depending on how the fixed-point binders are interpreted. These results smoothly unify the constructive canonicity results for inductive inequalities, proved in a general lattice setting, with the canonicity results for fixed point logics on a bi-intuitionistic base, proven in a non-constructive setting.
引用
收藏
页码:92 / 109
页数:18
相关论文
共 29 条
  • [1] DUALITY AND THE COMPLETENESS OF THE MODAL MU-CALCULUS
    AMBLER, S
    KWIATKOWSKA, M
    MEASOR, N
    [J]. THEORETICAL COMPUTER SCIENCE, 1995, 151 (01) : 3 - 27
  • [2] [Anonymous], ARXIV160308515
  • [3] [Anonymous], ARXIV160306547
  • [4] [Anonymous], ARXIV160308341
  • [5] Least and Greatest Fixed Points in Linear Logic
    Baelde, David
    [J]. ACM TRANSACTIONS ON COMPUTATIONAL LOGIC, 2012, 13 (01)
  • [6] Sahlqvist theorem for modal fixed point logic
    Bezhanishvili, Nick
    Hodkinson, Ian
    [J]. THEORETICAL COMPUTER SCIENCE, 2012, 424 : 1 - 19
  • [7] Epistemic logics for sceptical agents
    Bilkova, Marta
    Majer, Ondrej
    Pelis, Michal
    [J]. JOURNAL OF LOGIC AND COMPUTATION, 2016, 26 (06) : 1815 - 1841
  • [8] Britz C., 2016, THESIS
  • [9] Conradie W., 2017, EPISTEMIC LOGI UNPUB
  • [10] Conradie W., ARXIV151104271