C1,1 regularity for degenerate complex Monge-Ampere equations and geodesic rays

被引:30
作者
Chu, Jianchun [1 ]
Tosatti, Valentino [2 ]
Weinkove, Ben [2 ]
机构
[1] Chinese Acad Sci, Acad Math & Syst Sci, Inst Math, Beijing, Peoples R China
[2] Northwestern Univ, Dept Math, 2033 Sheridan Rd, Evanston, IL 60208 USA
基金
美国国家科学基金会;
关键词
C-1; regularity; complex Monge-Ampere equations; geodesic rays; quasi-psh envelopes; DIRICHLET PROBLEM; TEST CONFIGURATIONS; K-STABILITY; SPACE; ENVELOPES; CURVATURE; CURRENTS;
D O I
10.1080/03605302.2018.1446167
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove a C-1,C-1 estimate for solutions of complex Monge-Ampere equations on compact Kahler manifolds with possibly nonempty boundary, in a degenerate cohomology class. This strengthens previous estimates of Phong-Sturm. As applications we deduce the local C-1,C-1 regularity of geodesic rays in the space of Kahler metrics associated to a test configuration, as well as the local C-1,C-1 regularity of quasi-psh envelopes in nef and big classes away from the non-Kahler locus.
引用
收藏
页码:292 / 312
页数:21
相关论文
共 45 条
[21]  
Chen XX, 2000, J DIFFER GEOM, V56, P189
[22]   Optimal regularity of plurisubharmonic envelopes on compact Hermitian manifolds [J].
Chu, Jianchun ;
Zhou, Bin .
SCIENCE CHINA-MATHEMATICS, 2019, 62 (02) :371-380
[23]   Kahler currents and null loci [J].
Collins, Tristan C. ;
Tosatti, Valentino .
INVENTIONES MATHEMATICAE, 2015, 202 (03) :1167-1198
[24]   WEAK GEODESIC RAYS IN THE SPACE OF KAHLER POTENTIALS AND THE CLASS ε(X, ω) [J].
Darvas, Tamas .
JOURNAL OF THE INSTITUTE OF MATHEMATICS OF JUSSIEU, 2017, 16 (04) :837-858
[25]   GEODESIC RAYS AND KAHLER-RICCI TRAJECTORIES ON FANO MANIFOLDS [J].
Darvas, Tamas ;
He, Weiyong .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2017, 369 (07) :5069-5085
[26]   TIAN'S PROPERNESS CONJECTURES AND FINSLER GEOMETRY OF THE SPACE OF KAHLER METRICS [J].
Darvas, Tamas ;
Rubinstein, Yanir A. .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2017, 30 (02) :347-387
[27]   Kiselman's principle, the Dirichlet problem for the Monge-Ampere equation, and rooftop obstacle problems [J].
Darvas, Tamas ;
Rubinstein, Yanir A. .
JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2016, 68 (02) :773-796
[28]  
DEMAILLY JP, 1992, LECT NOTES MATH, V1507, P87
[29]  
Demailly JP, 1994, A MATHEMAT, VE26, P105
[30]   Numerical characterization of the Kahler cone of a compact Kahler manifold [J].
Demailly, JP ;
Paun, M .
ANNALS OF MATHEMATICS, 2004, 159 (03) :1247-1274