C1,1 regularity for degenerate complex Monge-Ampere equations and geodesic rays

被引:28
作者
Chu, Jianchun [1 ]
Tosatti, Valentino [2 ]
Weinkove, Ben [2 ]
机构
[1] Chinese Acad Sci, Acad Math & Syst Sci, Inst Math, Beijing, Peoples R China
[2] Northwestern Univ, Dept Math, 2033 Sheridan Rd, Evanston, IL 60208 USA
基金
美国国家科学基金会;
关键词
C-1; regularity; complex Monge-Ampere equations; geodesic rays; quasi-psh envelopes; DIRICHLET PROBLEM; TEST CONFIGURATIONS; K-STABILITY; SPACE; ENVELOPES; CURVATURE; CURRENTS;
D O I
10.1080/03605302.2018.1446167
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove a C-1,C-1 estimate for solutions of complex Monge-Ampere equations on compact Kahler manifolds with possibly nonempty boundary, in a degenerate cohomology class. This strengthens previous estimates of Phong-Sturm. As applications we deduce the local C-1,C-1 regularity of geodesic rays in the space of Kahler metrics associated to a test configuration, as well as the local C-1,C-1 regularity of quasi-psh envelopes in nef and big classes away from the non-Kahler locus.
引用
收藏
页码:292 / 312
页数:21
相关论文
共 45 条
  • [1] [Anonymous], ARXIV150904561
  • [2] [Anonymous], J DIFFERENTIAL GEOM
  • [3] [Anonymous], MATH RES LETT
  • [4] [Anonymous], ARXIV161002280
  • [5] [Anonymous], 2012, Adv. Lect. Math
  • [6] [Anonymous], J EUR MATH SOC JEMS
  • [7] [Anonymous], ARXIV13073008
  • [8] [Anonymous], J EUR MATH SOC JEMS
  • [9] [Anonymous], 2017, ANN PDE
  • [10] [Anonymous], P S PURE MATH